HIDDEN
ORDER

How Adaptation Builds Complexity

John H. Holland

S

HELIX BOOKsS
v Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California - New York
Don Mills, Ontario + Wokingham, England - Amsterdam - Bonn
Sydney - Singapore - Tokyo - Madrid - San Juan
Paris - Seoul - Milan - Mexico City - Taipei




Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book and Addison-Wesley was aware of a trademark claim, the designa-
tions have been printed in initial capital letters.

Library of Congtress Cataloging-in-Publication Data

Holland, John H. (John Henry), 1929-
Hidden order : how adaption builds complexity / John H. Holland.
p- cm.—(Helix books)

Includes bibliographical references and index.

ISBN 0-201-40793-0

1. Adaptive control systems—Mathematical models. 2. Adaptation
(Biology)—Mathematical models. 1. Title. II. Series: Helix books.
TJ217.H64 1995
003.7—dc20 95-20042

CIP

Copyright © 1995 by John H. Holland

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior writ-
ten permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

Jacket design by Lynne Reed

Text design by Diane Levy

Set in 10%2-point Bembo by Pagesetters, Incorporated
123456789 10-DOH-98979695

First printing, July 1995




The Ulam Lecture Series

THIS BOOK IS the first of a continuing series of books based on the
Stanislaw M. Ulam Memorial Lectures given at the Santa Fe Institute
in Santa Fe, New Mexico. These annual invited lectures, sponsored
jointly by the Institute and Addison-Wesley Publishing Company, are
dedicated to the memory of Stanislaw Ulam, a great mathematician
from the now legendary Polish School of Mathematics. Ulam came
to the Institute for Advanced Study in 1935, worked at Harvard, the
University of Wisconsin, and much later at the University of
Colorado. Most importantly, he joined the Los Alamos National
Laboratory in its founding year and was an intellectual force and
inspiration there from 1944 until his death in 1984, fostering a per-
haps uniquely intense interaction between mathematics and science.

As a mathematician, Stanislaw Ulam held his own with the likes
of Kuratowski, Mazur, Banach, von Neumann, and Erdos and his
work ranged widely over mathematics. But he was much more, a sci-
entist with a variety of interests who worked with many of the great
scientists of the age. Among the topics on which he and his collabo-
rators did founding work were the Monte Carlo method, computer
simulations of nonlinear dynamical systems, thermonuclear processes,
space propulsion, metrics for biological sequences, cellular automata,
and much more. The list of his scientific friends and collaborators
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includes many of the greatest minds of the twentieth century. Stan
Ulam’s interests in science knew no artificial boundaries; his approach
was truly interdisciplinary. As Frangoise Ulam has said, “Stan was a
sort of one-man Santa Fe Institute” He would have loved the
Institute’s interdisciplinary, interactive atmosphere and would have
contributed much. It is our loss that he died within a few days of the
official founding of SFI.
—L. M. SIMMONS, JR.
VICE PRESIDENT FOR ACADEMIC AFFAIRS
SANTA FE INSTITUTE



IT IS A GREAT HONOR for me to be here tonight to cele-
brate with you the tenth anniversary of the creation of the Santa Fe
Institute. I want to express all my thanks and appreciation to its
founder, my good friend George Cowan, to its leaders, Ed Knapp and
Mike Simmons, and to all the other persons who were involved in
creating this new series of institute lectures as a memorial to my late
husband.

For those of you who did not know Stan Ulam, let me just say a word
or two about him.

In a sense, Stan was a sort of one-man SFI because of the inter-
disciplinary nature of his pursuits. But that was so long ago that the
expression had hardly been coined yet.

Were he alive today, he would love SFI’s unstructured informality, for
he had very little use for all the trappings of bureaucracy and authority.
He loved to claim that the only committee he ever served on was the
Wine-Tasting Committee of the Junior Fellows at Harvard.

At Los Alamos, he and Carson Mark, the Theoretical Division
leader, once confounded the Lab by creating and circulating an official
interoffice memo that listed the numbers from one to one hundred in
alphabetical order “for quick and easy reference.”

When he was promoted to group leader he delighted in the fact that

vil




viil HIDDEN ORDER

he was a group leader of one, namely himself; for at first he was the only
member of his group.

Stan, you see, was a very playful man. And he never considered
thinking “work” but rather “play,” as in playing with mathematical
ideas or inventing mathematical games. He also took great delight in
playing with words.

The clever title of tonight’s lecture, “Complexity Made Simple,”
would please him very much, I think, because it is the kind of paradox
he liked. So without further ado I will yield the floor to the next
speaker, so we can listen to John Holland explain to us in simple terms
what complex systems are all about.

—FRANCOISE ULAM
AT THE INAUGURATION OF THE ULAM LECTURES




Sometimes I feel that a more rational explanation for all that has
happened during my lifetime is that I am still only thirteen years old,
reading Jules Verne or H. G. Wells, and have fallen asleep.

—STANISLAW ULAM
Adventures of a Mathematician (1976)

The man who had the highest record of accurate guesses in mathematics,
the man who could beat engineers at their game, who could size up
characters and events in a flash, was a member of an all-but-extinct

profession, the profession of prophet.
—GIAN-CARLO ROTA

IN MEMORIAM: STANISLAW ULAM
Notices of the American Mathematical Society (1989)







... Its point of view? One
with the twister in vista glide,
and the cricket in the ditch,
with river rain, and turbines’ trace:
within the latent
marrow of the egg, the amber
waves—is where
its vantage lies.
Entering the tornado’s core,
entering the cricket waltzed by storm—
to confiscate the shifting give
and represent the with—
out which.

—ALICE FULTON
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Preface

IN THE FALL of 1993, Ed Knapp, president of the Santa Fe Institute,
and Jack Repcheck, then editor-in-chief of Helix Books at Addison-
Wesley, approached me with a request: Would I inaugurate the Ulam
Lectures? The series was to be an annual event, honoring the renowned
twentieth-century polymath Stanislaw Ulam. The lectures were to be
aimed at a general, science-interested audience, and they were to be
expanded into a book so that there would be a permanent record.
Although I am quite active in institute affairs, the request came as a
complete surprise.

At first I was apprehensive because the time was short—the lectures
were to be given sometime in the first half of 1994 and a publishable
manuscript was due at the end of that summer. But there were several
incentives.

At the top of the list was my long admiration of Stan Ulam’s work.
When [ was a student, there were a few contemporary scientists whose
work and abilities I particularly admired: John von Neumann, Ronald
Fisher, and Robert Oppenheimer. In pursuing the many facets of von
Neumann’s work, I repeatedly came across the name Stanislaw Ulam in
contexts close to my main interests. So I began to look into his work.
That was the beginning of an increasing affinity for Ulam’s approach to
science, an affinity considerably enhanced when I read his 1976 book,

Xvil
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Adventures of a Mathematician. (There was also a period when I was
convinced that Stanislaw Lem, a Polish science fiction writer of Well-
sian stature, was Stan Ulam’s pen name.) When I was offered a year in
Los Alamos as Ulam Scholar, the chance to get to know the place that
had supplied the setting for much of his career played its part in my
acceptance. It was the only time I ever met him. Later, when Francoise
Ulam donated Stan’s private library to the Santa Fe Institute, I was
delighted to see how many books my own library held in common
with his. Ma bibliothéque, c’est moi.

Those same thoughts strongly influenced my decision to take on the
present commitment. As I began thinking seriously about what would
be entailed, I began to see the lectures as an unusual opportunity to
make explicit the pattern underlying the intuitions and ideas that had
been guiding my research since graduate student days. Writing for a
more general audience would force me to strive for bridges and the
kind of coherent overview not usually forced on technical work. That
was a challenge difficult to ignore.

Then there was my aerie, just completed on the far nothern shore of
Lake Michigan and designed for this kind of effort. What a grand way
to initiate it! There were other reasons, too, including a nice financial
inducement, but they played a lesser role in the decision.

This book centers on an area that has received considerable notice
recently: complexity. Stan Ulam made many focusing remarks about
complexity, using the word repeatedly and carefully, long before the
subject was popular or even named. Many of the themes here are
prefigured in Ulam’s comments. In writing the book, I have concen-
trated on that aspect of complexity that centers on adaptation, an area
now known as the study of complex adaptive systems (cas). It is my own
bias, as you will see from the book’s content, that adaptation gives rise
to a kind of complexity that greatly hinders our attempts to solve some
of the most important problems currently posed by our world.

I have not tried for a comprehensive review of work relevant to cas,
nor have I tried to critique other approaches. Instead, I have put all of
my effort into producing a single, coherent view of a nascent discipline.
The resulting volume is certainly idiosyncratic, though I think many of
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my colleagues at the Santa Fe Institute would agree with many parts of
it. Along with trying to provide an orderly overview, I have also tried to
give some feeling for the way a scientist attempts to develop a new
discipline. “Doing science,” particularly the synthesis of disparate ideas,
is not as arcane as it is often made out to be. Discipline and taste play a
vital role, but the activity is familiar to anyone who has made some
effort to be creative.

The views presented here have been honed through regular interac-
tion with two groups that have played a central role in my scientific
development. My longest affiliation is with the BACH group at the
University of Michigan (the current members are Arthur Burks, Rob-
ert Axelrod, Michael Cohen, John Holland, Carl Simon, and Rick
Riolo). We have been meeting regularly for more than two decades,
and four of the current members have been active participants from
the start. BACH is highly interdisciplinary—five departments are
represented—and highly informal, appearing on no roster or organiza-
tion chart in the university. Almost every idea in this book has been
“batted around” before the BACH group at one time or another.

The second group that has played a major role in my outlook is, of
course, the Santa Fe Institute (SFI). Though my association with SFI is
more recent than my association with BACH, it is no less important to
me. The institute encourages deep interdisciplinary science more effec-
tively than any other organization I have encountered. As a graduate
student, I thought that the kind of interaction the institute encourages
would be the “bread and butter,” or at least the “frosting on the cake,”
of a scientist’s activity. Alas, that is rarely the fact. In a university, much
time is taken up by advisory and administrative committees, grant
seeking and grant administration, negotiation of interdepartmental and
intercollegiate cooperation for proposed interdisciplinary activities, and
so on. Add in the primary duties of teaching and publication, and there
is precious little time for extended interdisciplinary explorations. SFI
consistently provides what is hard to come by in a university setting, the
opportunity for sustained interdisciplinary research. The institute came
into being through the insights and careful organizational work of
George Cowan and was soon augmented by an advisory board of
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scientists who were good at listening as well as presenting. That story
has been told elsewhere, by Mitch Waldrop in his 1992 book, Complex-
ity, so I will not repeat it here. Suffice it to say that SFI provides a
scientific environment that comes very close to the ideal I held as a
student.

The event that ultimately led to my association with SFI was an
invitation from Doyne Farmer to deliver a talk at one of the annual
conferences of the Center of Nonlinear Studies at the Los Alamos
National Laboratory. It was that conference that first introduced me to
Murray Gell-Mann. He later invited me to join the SFI advisory board,
which in turn led to a sustained interaction. That connection provided
me with a friend and critic par excellence. In trying to meet Murray’s
standards for explanation, I have found myself repeatedly refining my
ideas about cas, attempting to strengthen their foundation and broaden
their applicability. It has been an exhilarating exercise that is by no
means concluded. Of course, Murray is not the only person at SFI who
has influenced my work—the list is quite long and for the most part is
chronicled in Waldrop’s book—but I think it is fair to say that no other
interactions have challenged me to the same degree.

The National Science Foundation has consistently supported my
work over several decades, first when I was part of the Logic of
Computers Group at the University of Michigan, with Arthur Burks as
principal investigator; then, in later years, when Burks and I became
co—principal investigators. When I was a young faculty member at
Michigan, it was Art Burks who used his prestige to enable me to go
down paths that were not part of the traditional university regime. He
has been a close friend and mentor for almost forty years.

The MacArthur Foundation recently elected me a MacArthur Fel-
low. It was Murray Gell-Mann and his wife, Marcia, who informed me
of the honor. (And yes, I was in the shower when the call came.) There
is really no way to describe the feeling of freedom and elation that
accompanies such an award. For good or for ill, the financial security it
conveys has encouraged me to take ever-riskier steps in research. Deci-
sions about longer-term projects with uncertain return, such as this
book, are much easier.
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I would be more than remiss if I failed to mention Frangoise Ulam’s
introduction to the Ulam Lectures. You can read her words at the
beginning of this book—but words on paper cannot convey the grace
of its delivery. I first met Frangoise at the reception preceding the
lectures, where we had time for an extended conversation. Her charm
and intelligence immediately created a niche of liveliness and warmth
in a room full of conversations. It is easy to see why she influenced all
aspects of Stan Ulam’s research and life, a point he made repeatedly in
his autobiography.

I have left my wife, Maurita, for the end of this preface. She has been
my constant proxy for the intelligent, science-interested layperson. She
has helped in many ways, over and beyond supplying support and
encouragement. Early on, it was Maurita who suggested the name
“Echo” for the cas models described in this book. She has read the
chapters that follow many times. Perhaps more willing than the average
reader to accept my good intent, in all other respects she has been an
effective, unbiased critic. Where this book shows some piece of clarity
or untrammeled phrasing, it is likely to be because of her suggestions.

—JOHN HOLLAND
FRIDHEM
GULLIVER, MICHIGAN
APRIL 1995







Basic Elements

ON AN ORDINARY DAY in New York City, Eleanor Petersson
goes to her favorite specialty store to pick up a jar of pickled herring.
She fully expects the herring to be there. Indeed, New Yorkers of all
kinds consume vast stocks of food of all kinds, with hardly a worry about
continued supply. This is not just some New Yorker persuasion; the
inhabitants of Paris and Delhi and Shanghai and Tokyo expect the same.
It’s a sort of magic that everywhere is taken for granted. Yet these cities
have no central planning commissions that solve the problems of pur-
chasing and distributing supplies. Nor do they maintain large reserves to
buffer fluctuations; their food would last less than a week or two if the
daily arrivals were cut off. How do these cities avoid devastating swings
between shortage and glut, year after year, decade after decade?

The mystery deepens when we observe the kaleidoscopic nature of
large cities. Buyers, sellers, administrations, streets, bridges, and build-
ings are always changing, so that a city’s coherence is somehow imposed
on a perpetual flux of people and structures. Like the standing wave in
front of a rock in a fast-moving stream, a city is a pattern in time. No
single constituent remains in place, but the city persists. To enlarge on

the previous question: What enables cities to retain their coherence
despite continual disruptions and a lack of central planning?
There are some standard answers to this question, but they really do
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not resolve the mystery. It is suggestive to say that Adam Smith’s
“invisible hand,” or commerce, or custom, maintains the city’s coher-
ence, but we still are left asking How?

Other patterns in time exhibit similar riddles. For instance, if we shift
to the microscopic level, we find another community every bit as
complicated as New York City. The human immune system is a com-
munity made up of large numbers of highly mobile units called anti-
bodies that continually repel or destroy an ever-changing cast of invaders
called antigens. The invaders—primarily biochemicals, bacteria, and
viruses—come in endless varieties, as different from one another as
snowflakes. Because of this variety, and because new invaders are always
appearing, the immune system cannot simply list all possible invaders. It
must change or adapt (Latin, “to fit”) its antibodies to new invaders as
they appear, never settling to a fixed configuration. Despite its protean
nature, the immune system maintains an impressive coherence. Indeed,
your immune system is coherent enough to provide a satisfactory
scientific definition of your identity. It is so good at distinguishing you
from the rest of the world that it will reject cells from any other human.
As a result, a skin graft even from a sibling requires extraordinary
measures.

How does the immune system develop its exquisite sense of identity,
and what makes that identity vulnerable? How does an immune disease
such as AIDS manage to destroy the identity? We can say that the
identifications, and the misidentifications, are a product of “adapta-
tion,” but the “how” of this adaptive process is far from obvious.

It is more than an academic quest to try to understand the persistence
and operation of these two complex communities. Pressing problems,
such as prevention of inner-city decay and control of diseases such as
AIDS, turn on this understanding. Once we look in this direction, we
see that there are other complex systems that pose similar questions, and
they too present troubling, long-range problems.

Consider the mammalian central nervous system (CNS). Like the
immune system, the CNS consists of a large number of component
cells, called neurons, that occur in a wide range of forms. Even a simple
CNS consists of hundreds of millions of neurons, of hundreds of types,
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and each neuron directly contacts hundreds, even thousands, of other
neurons to form a complex network. Pulses of energy flash over this
network, producing Sherrington’s (1951) “enchanted loom.” This net-
work is similar to the immune system, with an aggregate emergent
identity that learns speedily and with great facility. Though the activity
of an individual neuron can be complex, it is clear that the behavior of
the CNS aggregate identity is much more complex than the sum of
these individual activities. The behavior of the central nervous system
depends on the interactions much more than the actions. The sheer
number of interactions—hundreds of millions of neurons, each under-
going thousands of simultaneous interactions in thousandths of a
second—takes us well beyond any of our experience with machines.
The most sophisticated computer, in comparison, seems little more
than an automated abacus. The myriad interactions, modified by
learned changes, yield the unique ability of canids, felines, primates,
and other mammals to anticipate the consequences of their actions by
modeling their worlds.

After more than a century of intensive effort, we still cannot model
many basic capabilities of the CNS. We cannot model its ability to parse
complex unfamiliar scenes into familiar elements, let alone its ability to
construct experience-based internal models. The relation between the
distributed, diverse CNS and the phenomenon we call consciousness is
largely unknown, a mystery that leaves us with few guidelines for the
treatment of mental diseases.

Ecosystems share many of the features and puzzles presented by an
immune system or a CNS. They exhibit the same overwhelming
diversity. We have yet to assay the range of organisms present in a cubic
meter of temperate-zone soil, let alone the incredible arrays of species
in a tropical forest. Ecosystems are continually in flux and exhibit a
wondrous panoply of interactions such as mutualism, parasitism, bio-
logical arms races, and mimicry (more about these later). Matter,
energy, and information are shunted around in complex cycles. Once
again, the whole is more than the sum of its parts. Even when we have
a catalog of the activities of most of the participating species, we are

far from understanding the effect of changes in the ecosystem. For
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example, the stupendous richness of the tropical forest biome contrasts
with the poverty of its soil. The forest can only maintain its diversity
through a complex set of interactions that recycle sparse nutrients
through the system, over and over again.

Until we have an understanding of these complicated, changing
Interactions, our attempts to balance extraction of ecosystem resources
against sustainability will remain at best naive, at worst disastrous. We, as
humans, have become so numerous that we perforce extensively mod-
ify ecological interactions, with only vague ideas of longer-range ef-
tects. Yet our well-being, even our survival, depends on our being able
to use these systems without destroying them. Attempts to turn tropical
forest into farmland, or to fish the Grand Banks “efficiently,” are only
symptoms of a problem that year by year becomes more serious.

Many other complex systems show coherence in the face of change.
But we can already begin to extract some of the commonalities, and we
will later examine additional systems in this light. We can see, for
instance, that the coherence and persistence of each system depend on
extensive interactions, the aggregation of diverse elements, and adapta-
tion or learning. We have also noted that several perplexing problems of
contemporary society—inner-city decay, AIDS, mental disease and
deterioration, biological sustainability—are likely to persist until we
develop an understanding of the dynamics of these systems. We will see
that economies, the Internet, and developing embryos offer similar
challenges—trade balances, computer viruses, and birth defects, for
example—and we will encounter still others.

Even though these complex systems differ in detail, the question of
coherence under change is the central enigma for each. This common
factor is so important that at the Santa Fe Institute we collect these
systems under a common heading, referring to them as complex adaptive
systems (cas). This is more than terminology. It signals our intuition that
general principles rule cas behavior, principles that point to ways of
solving the attendant problems.

Our quest is to extract these general principles. The quest is new, so
this book can only begin to map the territory. And much of that map
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will consist of terra incognita and legends such as “monsters exist here.”
Nevertheless, we have come far enough to do more than make casual
comparisons. In this first chapter, we can observe some of the promi-
nent landmarks and we can estimate what kinds of apparatus will be
needed to come to a broad understanding of complex adaptive systems.

Objectives

The purpose of this book is to explore the ways in which our intuitions
about cas can be transformed into a deeper understanding. Theory is
crucial. Serendipity may occasionally yield insight, but is unlikely to be
a frequent visitor. Without theory, we make endless forays into un-
charted badlands. With theory, we can separate fundamental charac-
teristics from fascinating idiosyncrasies and incidental features. Theory
supplies landmarks and guideposts, and we begin to know what to
observe and where to act.

One specific piece of understanding that theory could supply is a
more principled way of locating “lever points” in cas. Many cas have the
property that a small input can produce major predictable, directed
changes—an amplifier effect. A familiar example is a vaccine. An
infection into our bloodstream of a small amount of an incapacitated
antigen, say the measles virus, can stimulate the immune system to
produce enough antibodies to make us completely immune to the
disease. The vaccine “levers” the immune system into learning about
the disease, saving the costly, uncomfortable procedure of learning
about the disease “on line.” We know of other lever points in other cas,
but to date we have no comprehensive method of searching them out.
Theory is our best hope of finding such a method.

The task of formulating theory for cas is more than usually difficult
because the behavior of a whole cas is more than a simple sum of the
behaviors of its parts; cas abound in nonlinearities (more about this
shortly). Nonlinearities mean that our most useful tools for generaliz-
ing observations into theory—trend analysis, determination of equi-
libria, sample means, and so on—are badly blunted. The best way to
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compensate for this loss is to make cross-disciplinary comparisons of cas,
in hopes of extracting common characteristics. With patience and
insight we can shape those characteristics into building blocks for a
general theory. Cross-comparisons provide another advantage: charac-
teristics that are subtle and hard to extract from one system can be
salient and easy to examine in another. This chapter is about seven
characteristics that cross-disciplinary comparisons suggest are central to
a broad understanding of cas. Subsequent chapters will weave these
characteristics into the elements of a theory.

Agents, Meta-Agents, and Adaptation

Before going on to a description of the characteristics themselves, I
should say something more about the general setting. Cas are, without
exception, made up of large numbers of active elements that, from the
examples we’ve seen, are diverse in both form and capability (see Figure
1.1). Think of the great array of firms in New York City or the exqui-
sitely tuned antibodies in the immune system. To refer to active elements

Aggregate agent

Behavior depends on the inter-

actions of the component agents \
in the network. The aggregate !
agents may again be aggregated
to add new hierarchical levels.

[Adaptive agent

Figure 1.1 A Complex Adaptive System.
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without invoking specific contexts, I have borrowed the term agent
from economics. The term is descriptive but avoids preconceptions.

If we are to understand the interactions of large numbers of agents,
we must first be able to describe the capabilities of individual agents. It
is useful to think of an agent’s behavior as determined by a collection
of rules. Stimulus-response rules are typical and simple: IF stimulus s
occurs THEN give response r. IF the market goes down THEN sell.
IF the car has a flat tire THEN get the jack. And so on. To define the
set of stimulus-response rules possible for a given agent, we must
describe the stimuli that agent can receive and the responses it can
give (see Figure 1.2).

HF STIMULUS THEN RESPONSE

Figure 1.2 A Rule-Based Agent.
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Though stimulus-response rules are limited in scope, there are simple
ways of expanding that scope. Indeed, with minor changes, the scope
can be enlarged sufficiently that clusters of rules can generate any
behavior that can be computationally described. In the definition of
these rules, our intent is not to claim that we can locate the rules
explicitly in the real agents. Rules are simply a convenient way to
describe agent strategies. In the next chapter I will say more about this
rule-based approach to agent behavior; for now, let us treat it as a
descriptive device.

A major part of the modeling effort for any cas, then, goes into
selecting and representing stimuli and responses, because the behaviors
and strategies of the component agents are determined thereby. For
agents in the central nervous system (neurons), the stimuli could be
pulses arriving at each neuron’s surface, and the responses could be the
outgoing pulses. For agents in the immune system (antibodies), the
stimuli could be molecular configurations on the surface of the invading
antigens, and the responses could be differing adhesions to the antigen
surface. For agents in an economy (firms), the stimuli could be raw
materials and money, and the responses could be goods produced. We
could make similar selections for other cas. The “could” in each case is
relevant because other selections are possible. Different selections em-
phasize different aspects of the cas, yielding different models. This is not
so much a matter of correct or incorrect (though models can be poorly
conceived) as it is a matter of what questions are being investigated.

Once we specify the range of possible stimuli and the set of allowed
responses for a given agent, we have determined the kinds of rules that
agent can have. Then, by looking at these rules acting in sequence, we
arrive at the behaviors open to the agent. It is at this point that learning
or adaptation enters. In setting up a list of basic elements, we might
think it natural to put “adaptation” at the head of the list, because
adaptation is the sine qua non of cas. But adaptation is such a broad topic
that it encompasses almost everything else in this book. The present
chapter centers on the more specific characteristics of cas, so I will only
say a few words about adaptation here and provide a more careful
discussion in the next chapter.




Basic Elements 9

(ADAPTATION]

changes in structure (strategy)
based on system experience

GE GG GG

|
——

% time 1 2 10
|
; SYSTEM MODIFICATION TIME

central nervous system seconds to hours

immune system hours to days

business firm months to years

species days to centuries

ecosystem years to millennia

Figure 1.3 Adaptation and Learning.

Adaptation, in biological usage, is the process whereby an organism
fits itself to its environment. R oughly, experience guides changes in the
organism’s structure so that as time passes the organism makes better use
of its environment for its own ends (see Figure 1.3). Here we expand
the term’ range to include learning and related processes. With this
extension, adaptation applies to all cas agents, despite the different

timescales of different cas processes. And indeed, the timescales do vary.
Adaptive changes in individual neurons in the nervous system take
place over an interval that ranges from seconds to hours; adaptive
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changes in the immune system require hours to days; adaptive changes
in a business firm take months to years; adaptive changes in an ecosys-
tem take years to millennia or more. Still, the mechanisms involved in
all these cases have much in common, once time is factored out. There
is a general framework that supports this extended use of the term (see
Holland, 1992), but we do not need that level of detail just now. Parts of
that framework will be introduced as needed throughout the book.

Overall, then, we will view cas as systems composed of interacting
agents described in terms of rules. These agents adapt by changing their
rules as experience accumulates. In cas, a major part of the environment
of any given adaptive agent consists of other adaptive agents, so that a
portion of any agent’s efforts at adaptation is spent adapting to other
adaptive agents. This one feature is a major source of the complex
temporal patterns that cas generate. To understand cas we must under-
stand these ever-changing patterns. The rest of this book is devoted to
developing such an understanding by filling in this rough sketch, adding
detail, content, and relevant pieces of theory. Now to our seven basics.

Seven Basics

The seven basics consist of four properties and three mechanisms that
are common to all cas. They are not the only basics that could be
selected from a list of common characteristics; the selection process is,
in part, a matter of taste. Still, all the other candidates of which I am
aware can be “derived” from appropriate combinations of these seven.

In presenting the basics, I have ordered them in a way that empha-
sizes their interrelations rather than grouping them into properties and
mechanisms.

AGGREGATION (PROPERTY)

Aggregation enters into the study of cas in two senses. The first refers to
a standard way of simplifying complex systems. We aggregate similar
things into categories—trees, cars, banks—and then treat them as

equivalent. Humans analyze familiar scenes in this way with the greatest
of ease. Not too surprisingly, the categories we choose are reusable; we
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can almost always decompose novel scenes into familiar categories. And
we can generate scenes we have never seen by recombining the
categories—much as the griffin, chimera, and harpy of a medieval
bestiary are formed by recombining familiar animal parts in new ways.

Aggregation in this sense is one of our chief techniques for con-
structing models. We decide which details are irrelevant for the ques-
tions of interest and proceed to ignore them. This has the effect of
collecting into a category things that differ only in the abandoned
details; the category becomes a building block for the model. Model-
ing, it should be clear, is an art form. It depends on the experience and
taste of the modeler. In this it is much like cartooning, especially
political cartooning. The modeler (cartoonist) must decide which fea-
tures to make salient (exaggerate), and which features to eliminate
(avoid), in order to answer the questions (make the political point).

The second sense of aggregation is closely related to the first, but it
is more a matter of what cas do, rather than how we model them. It
concerns the emergence of complex large-scale behaviors from the
aggregate interactions of less complex agents. An ant nest serves as a
familiar example. The individual ant has a highly stereotyped behav-
ior, and it almost always dies when circumstances do not fit the
stereotype. On the other hand, the ant aggregate—the ant nest—is
highly adaptive, surviving over long periods in the face of a wide
range of hazards. It is much like an intelligent organism constructed of
relatively unintelligent parts. Douglas Hofstadter’s wonderful chapter
“Ant Fugue” in his 1979 book makes this point better than anything
else I have read. In it the ant nest provides a comprehensible version of
more spectacular emergent phenomena, such as the intelligence of
large numbers of interconnected neurons, or the identity provided by
a diverse array of antibodies, or the spectacular coordination of an
organism made of myriad cell types, or even the coherence and
persistence of a large city.

Aggregates so formed can in turn act as agents at a higher level—
meta-agents. The interactions of these meta-agents are often best de-
scribed in terms of their aggregate (first sense) properties (see Figure
1.4). Thus we speak of the gross domestic product of an economy, or
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the identity provided by the immune system, or the behavior of a
nervous system. Meta-agents can, of course, aggregate (second sense) in
turn to yield meta-meta-agents. When this process is repeated several
times, we get the hierarchical organization so typical of cas.

Aggregate Emergent
Aggregate Property
Economy
« firm 1 l\-m__ Gross
= firm 2 S Domestic Product

- firm 3 -

Immune System
= antibody 1 . Individual

- antibody 2 = --- - Identity

= antibody 3 /

Nervous System |

= zeuron 1 . ~—— Behavior

Figure 1.4  Aggregation and Aggregate Properties.

Aggregation in the second sense is indeed a basic characteristic of all
cas, and the emergent phenomena that result are the most enigmatic
aspect of cas. The study of cas turns on our ability to discern the
mechanisms that enable simple agents to form highly adaptive aggre-
gates. What kind of “boundaries” demarcate these adaptive aggregates?
How are the agent interactions within these boundaries directed and
coordinated? How do the contained interactions generate behaviors
that transcend the behaviors of the component agents? We must be able
to answer such questions if we are to resolve the mysteries, and the
difficulties, that attend cas.

TAGGING (MECHANISM)

There is a mechanism that consistently facilitates the formation of
aggregates—a mechanism that in this book will go by the name tagging.
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The most familiar example is a banner or flag that is used to rally
members of an army or people of similar political persuasion. A more
operational version of a tag, in these days of Internet, is the header
on a message that knits together members of a bulletin board or con-
ference group. Still more operational are the “active sites” that
enable antibodies to attach themselves to antigens. The sophistication
of this particular version of tagging is well described in Edelman’s
(1988) discussion of cell adhesion molecules. We can continue with
the visual patterns and pheromones that facilitate selective mating
in animals, and the trademarks, logos, and icons that facilitate com-
mercial interaction (see Figure 1.5). It soon becomes apparent that
tagging is a pervasive mechanism for aggregation and boundary for-
mation in cas.

When we closely examine different instances of tagging, we see there
is a common feature: cas use tags to manipulate symmetries. Because
symmetries are common, we often use them in perceiving or modeling
our day-to-day world, sometimes quite unconsciously. They enable us
to ignore certain details, while directing our attention to others. Weyl
(1952) gives a rich exposition of this point. The classic example of a
full-blown symmetry is a perfect sphere, say the white cue ball in
billiards. A cue ball exhibits complete rotational symmetry, so that
rotation in any direction produces no noticeable change. If we put a
stripe around the cue ball’s “equator,” turning it into one of the other
billiard balls, we break the symmetry, allowing us to distinguish the
previously indistinguishable. For example, if we start the striped ball
spinning, we can easily observe whether or not the ball’s axis of rotation
defines the equator marked out by the stripe. Most rotations produce
noticeable changes, except for those around the axis that defines the cue
ball’s equator. That is, some symmetries are broken and others remain.
In general, tags enable us to observe and act on properties previously
hidden by symmetries.

To carry the example a bit further, consider a set of cue balls in rapid
motion on a billiard table, say after a strong “break” We cannot
distinguish the individual cue balls unless we keep a careful record of
their trajectories. But again, we can break the symmetry via a tag. If we
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Figure 1.5 Tags and Aggregates.

put a striped cue ball in with the other cue balls, we can easily track it
despite its motion.

Tags are a pervasive feature of cas because they facilitate selective
interaction. They allow agents to select among agents or objects that
would otherwise be indistinguishable. Well-established tag-based inter-
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actions provide a sound basis for filtering, specialization, and coopera-
tion. This, in turn, leads to the emergence of meta-agents and organiza-
tions that persist even though their components are continually
changing. Ultimately, tags are the mechanism behind hierarchical
organization—the agent / meta-agent / meta-meta-agent / . . . orga-
nization so common in cas. We’ll see many examples of the origin and
intervention of tags as we go along.

NONLINEARITY (PROPERTY)

It is little known outside the world of mathematics that most of our
mathematical tools, from simple arithmetic through differential cal-
culus to algebraic topology, rely on the assumption of linearity.
Roughly, linearity means that we can get a value for the whole by
adding up the values of its parts. More carefully, a function is linear if the
value of the function, for any set of values assigned to its arguments, is
simply a weighted sum of those values. The function 3x + 5y + 2, for
example, is linear.

We say some numerical property of a system is linear, relative to nu-
merical values assigned to its parts, if the property is a linear function of
those values. Consider, for example, the fuel consumption cofaplane asa
function of its velocity v and its altitude x. Given suitable units for fuel
consumption, altitude, and velocity, we might be able to establish that

c= (0.5 + (—=0.1)v.

Fuel consumption then would be linear in terms of velocity and
altitude.

Polls, or project trends, or industrial statistics, all of which employ
summation, are only useful if they describe linear properties of the
underlying systems. It is so much easier to use mathematics when
systems have linear properties that we often expend considerable effort
to justify an assumption of linearity. Whole branches of mathematics
are devoted to finding linear functions that are reasonable approxima-
tions when linearity cannot be directly established. Unfortunately,
none of this works well for cas. To attempt to study cas with these
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techniques is much like trying to play chess by collecting statistics on
the way pieces move in the game.

Let me illustrate the difficulty by starting with one of the simplest
nonlinear interactions, that between a predator population and its prey.
The model we look at, despite its simple assumptions, does a satisfactory
job of describing real data, such as the centuries-long record of lynx-
hare interactions derived from the Hudson Bay Company’s yearly
records of pelt acquisitions. In putting this model together, we sketch a
typical procedure for building mathematical models. When we have
finished, we’ll have a clear example of the complications caused by
nonlinearities.

We begin with the commonsense observation that increases in either
the predator population or the prey population increase the likelihood
of encounters between predator and prey. Symbolically, if U represents
the number of predators in a given area, say a square mile, and
represents the number of prey in the same area, then the number of
interactions per unit time, say a day, is given by UV, where ¢ is a
constant that reflects the efficiency of the predator (for example, the
average rate at which it searches the territory). If c = 0.5, U = 2, and
V=10, then there will be

cUV = 0.5(2)(10) = 10 encounters

per day per square mile. If the number of predators increases by 2, so
that U = 4, and the number of prey increases by 10, so that V= 20,
then the number of encounters will be quadrupled to

cUV = 0.5(4)(20) = 40 encounters

per day per square mile. This expression involves a nonlinearity, one of
the simplest, because it entails the product of two distinct variables
instead of their sum. That is, the overall predator-prey interaction
cannot be obtained merely by adding predator activity to prey activity.

Our next step is to take explicit account of the fact that the popula-
tions change over time. Notationally, we let U(¢) stand for the popula-
tion of predators at time ¢; similarly V(f) stands for the population of
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prey at time . We augment the predator-prey interaction by allowing
for births and for deaths from causes other than predation. Taking the
simplest approach, we set a common birthrate b for all predators, so that
the number of predator births at time ¢ is bU(f). Deaths can be handled
similarly by using a common death rate d, so that the number of
predator deaths at time ¢ is dU(f).

If we ignore predator-prey interactions for a moment, we arrive at a
simple model of the way the population of predators changes over time.
The size of the population after one unit of time has elapsed is the
population at time ¢, minus the deaths, plus the births, or

Ut + 1) = U — dU() + bU().

This equation, with allowances for aging, is the foundation for popu-
lation projections and such mundane things as life insurance pre-
miums. We use exactly the same argument to get a similar equation
for the prey,

Vit + 1) = V(i) — d' V() + b' V),

where b and d' are the respective birth and death rates for the prey
(again without interactions).

To reintroduce the effect of predator-prey interactions, we incorpo-
rate the intuitive idea that the predator enhances its well-being each
time it catches prey. Ultimately this process exerts a positive effect on
the predator’s production of offspring. To capture this idea mathe-
matically, introduce another constant r that represents the efficiency of
transforming captured prey (food) into offspring. More interactions
mean more births, so using the interaction rate cU(f) (f), we get

r[cU) V(D]

as the enhancement in births because of predator-prey interaction. The
population change for predators then becomes

Ut + 1) = U@) — dU(r) + bU() + r[cU(e) V(1)].
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For prey, capture by a predator increases the number of deaths. Using '
to indicate the vulnerability to capture and death during interactions,
we obtain a population equation for the prey,

Vit + 1) = V(i) — d' V) — ¢ [cUOVE] + b V().

This pair of equations for U(t + 1) and V(¢ + 1) is a version of the
famous Lotka-Volterra model (see Lotka, 1956). Standard ways of
simplifying and solving the Lotka-Volterra equations show that, under
most conditions, the predator population will go through a series of
oscillations between feast and famine, as will the prey population. This
prediction is borne out by the Hudson Bay Company’s records. In the
long run, extensions of such models should help us understand why
predator-prey interactions exhibit strong oscillations, whereas the in-
teractions that form a city are typically more stable. For now we are
only interested in the effect of nonlinearities on such modeling efforts.

Let’s return to the interactive part of the model. The cU®) V()
formulation is actually a starting point for many other models, includ-
Ing interactions between atoms or molecules or even billiard balls. To
study the effect of nonlinear interactions in the simplest possible setting,
we shift back to the billiard balls (see Figure 1.6).

Let’s restrict the model to just three “species” of billiard balls: white
balls with a red stripe, white balls with an orange stripe, and solid-blue
balls. Assume that there are several of each on the table and that they are
in random motion—a kind of “big bang” or, better, “big break” Also
assume, somewhat fancifully, that the “stripes” sometimes stick to the
“solids” when they collide, as if they had dots of Velcro on their
surfaces. The earlier formula cUV can now be used to model the rate at
which the “stripe/solid compounds” form.

To see this, let’s begin with the red-stripe/blue-solid combination.
Our U gives the proportion of red-stripes on the table, I/ gives the
proportion of blue-solids, and the constant ¢ now gives a reaction rate
that depends on the stickiness of the red-stripe/blue-solid combina-
tion. Using Z({) to represent the proportion of red-stripes stuck to blue-
solids at time ¢, we get a simpler version of the Lotka-Volterra equation,
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The simplest models of interactions use madom collisions
(e.g. atomic, chemical, and predator-prey models)

® o
9 Total number of balls: 10
& ® Proportion of ©: 4/10 = 0.4
®©— /_’* Proportion of @: 5/10 = 0.5
® [
o ®

Some collisions produce a2 compound (a product).
The proportion of collisions resulting in a2 compound is
set by a reaction rate using the (nonlinear) equation:

[propor.©)] x [propor.@] x rate = [propor.&B]
[0.4] x [0.5] x 05 = [0.1]

[0.5]
Figure 1.6 A Billiard Ball Model of Interaction.
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Z(t + 1) = Z(i) + U@ V().

For example, if Z(f) = 0, U(r) = 0.4, V(t) = 0.5, and ¢ = 0.5, then

after one unit of time the proportion of the red-stripe/blue-solid com-
pound is

Z(t + 1) = 0 + 0.5(0.4)(0.5) = 0.1.

Different kinds of balls may have different reaction rates:

REACTION ® LY
RATES oxange stripe red stripe

blue solid . 0.5 0.1
Suppose we want to know the proportion of collisions
resulting in a stripe-solid compound {&Band &B}.

Can we build a simple model by assigning an aggregate
(average) reaction rate to the overall process?

aggregate

. | reaction rate
8

proportion [0.4+0.1] \ <P

#—

e
@ R

proportion [0.5]
This reaction aggregates the stripes so it uses only the total
proportion of stripes {proportion of © + proportion of &}.
FOR THE MODEL TO WORK: Two mixes of stripes with
the same total must produce the same result.

Figure 1.7 Aggregate Reactions.
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We can proceed similarly with the orange-stripes, allowing for the
fact that stickiness of the orange-stripes may be different from that of
the red-stripes (see Figure 1.7). Let W/(¢) be the proportion of orange-
stripes at time f, let Y(f) be the proportion of the orange-stripe/blue-
solid compound at time ¢, and let ¢’ be the reaction rate determined by
the stickiness of orange-stripes. Then, as for the red-stripes, the formula

Yt + 1) = Y + ¢ WO V()

gives the outcome of the interaction of orange-stripes with blue-solids.
IfY(H) =0, W(t) =0.1,and ¢’ = 0.1, then

Y(t + 1) = 0 + 0.1(0.1)(0.5) = 0.005.

We can get the total stripe-solid compound (red-stripe/blue-solid
plus orange-stripe/blue-solid), X(f), by adding the results of the separate
reactions,

Xt+ 1))=Y+ 1)+ 2Ze+1)
= Y() + Z() + UG V) + ¢ W) .

Using the numerical values given earlier, we obtain
X(t+ 1) = 0.1 + 0.005 = 0.105.

This part of the model is indeed linear—the whole does equal the sum
of the parts!

Now suppose we want to simplify the model by aggregating the
stripes into a single category. The idea is to calculate the total stripe-
solid compound using only the total proportion of stripes on the table.
Even when there are only two species of stripes, as in the present case,
this aggregation cuts the complication (the number of equations) in
half. When there are large numbers of species (as with an ecosystem or a
city), aggregation makes the difference between feasibility and infea-
sibility when it comes to analysis. The simplification occurs because the
aggregate equation uses a single variable S(#) for the total population of
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stripes, along with a single reaction coefficient ¢”, giving the single
equation

X(t+ 1) = X&) + 'S 10).

There is a problem about the validity of this equation, however. For it
to be useful, we must find a coefficient ¢’ that works for all mixes of
stripes.

Under a standard linear approach, we would obtain ¢” by averaging
the coefficients of the individual stripe-solid interactions. However, this
is the point at which the nonlinearities interfere. Consider two different
mixes of stripes. In mix 1, the proportion of red-stripes is U = 0.4 and
the proportion of orange-stripes is I = 0.1; in mix 2, the proportion is
reversed, so that U = 0.1 and W = 0.4. In both cases the total number
of stripes is S = U + W = 0.5. It follows that in both cases the equa-
tions for X must give the same answers for the proportion of stripe-solid
compound, since all the numbers on the right side are the same. But
what actually happens? Do the interactions of the two different mixes
really yield the same total proportion of stripe-solid compound?

To check, let’s carry out the detailed computation for the two mixes.
For mix 1, we have already calculated the result when X(f) = 0,

X+ 1) =Y+ 1)+ Z(t+ 1) = 0.105.
For mix 2, we have

X(t + 1)

Yt + 1) = Z(t + 1)
Y() + Z() + U@ V() + ¢ W) V(D)
=0+ 0+ 0.5(0.1)(0.5) + 0.1(0.4)(0.5)
= 0.025 + 0.020 = 0.045.

And there’s the rub. The two mixes produce different compound totals,
0.105 versus 0.045, even though the total number of stripes is the same.
No summing or averaging of the reaction coefficients of the aggregate’s
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parts will work, because there is no coefficient that will work for both
mixes. The nonlinear interactions prevent us from assigning an aggre-
gate reaction rate to the aggregate reaction.

We are now at the end of this particular tale. We’ve seen that even
in the simplest situations nonlinearities can interfere with a linear
approach to aggregates. That point holds in general: nonlinear interac-
tions almost always make the behavior of the aggregate more compli-
cated than would be predicted by summing or averaging.

FLOWS (PROPERTY)

The idea of flows extends well beyond the movement of fluids. In
everyday usage, we speak of the flow of goods into a city or the flow
of capital between countries. In more sophisticated contexts, we think
of flows over a network of nodes and connectors. The nodes may
be factories, and the connectors transport routes for the flow of
goods between the factories. Similar {node, connector, resource}
triads exist for other cas: {nerve cells, nerve cell interconnections,
pulses) for the central nervous system; {species, foodweb interactions,
biochemicals} for ecosystems; {computer stations, cables, messages}
for the electronic Internet; and so on (see Figure 1.8). In general
terms, the nodes are processors—agents—and the connectors desig-
nate the possible interactions. In cas the flows through these net-
works vary over time; moreover, nodes and connections can appear
and disappear as the agents adapt or fail to adapt. Thus neither the
flows nor the networks are fixed in time. They are patterns that re-
flect changing adaptations as time elapses and experience accumu-
lates.

Tags almost always define the network by delimiting the critical
interactions, the major connections. Tags acquire this role because the
adaptive processes that modify cas select for tags that mediate useful
interactions and against tags that cause malfunctions. That is, agents
with useful tags spread, while agents with malfunctioning tags cease to
exist. Later on we will look at this process in some detail.

There are two properties of lows, well known from economics, that
are important to all cas. The first of these is the multiplier effect (see, for
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Figure 1.8 Flows.

example, Samuelson, 1948), which occurs if one injects additional
resource at some node. Typically this resource is passed from node to
node, possibly being transformed along the way, and produces a chain
of changes (see Figure 1.9).
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Figure 1.9 Multiplier Effect.
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The simplest examples come from economics. When you contract
to build a house, you pay the contractor, who pays the tradesmen, who
in turn buy food and other commodities, and so on, stage by stage
through the economic network. In order to make a simple computa-
tion, let’s assume that at each stage one-fifth of the new income is saved,
and the other four-fifths is paid to the next stage. Then for each dollar
you pay, 80 cents will be passed on by the contractor to the tradesmen,
who in turn pass on 64 cents, and so on. More generally, a fraction ris
passed on at each stage. So at stage 2, a fraction r of the original amount
is available. At stage 3, a fraction r of that ris available, so 12 is available at
stage 3. And so it goes for each successive stage. We can calculate the
total effect by using the fact that 1 +r+ 2+ + ... =1/(1 — ).
In this example, r= 0.8, so the total effect is approximately
1/(1 — 0.8) = 5. That is, the initial effect, your contract, is multiplied
by five when we trace its total effect as it passes through the network.

This multiplier effect is a major feature of networks and flows. It
arises regardless of the particular nature of the resource, be it goods,
money, or messages. It is relevant whenever we want to estimate the
effect of some new resource, or the effect of a diversion of some
resource over a new path. It is particularly evident when evolutionary
changes occur, and it typically jeopardizes long-range predictions based
on simple trends.

The second property is the recycling effect—the effect of cycles in the
networks (see Figure 1.10). This too is most easily explained using an
example from economics. Consider a network involving three nodes,
say an ore supplier, a steel producer, and a node that stands for auto
fabrication and use. For simplicity, we adjust the resource measures
(weights) so that one unit of ore produces one unit of steel which in
turn produces one unit of automobile. Further, we’ll have the steel
producer send exactly half its output to the auto fabrication/use node.
That is, if the ore supplier ships 1000 units of ore, that will translate
through the network to become 0.5(1000) = 500 units of auto. If we
assume that the autos produced are used until they turn into unrecover-
able rust, then the return for each 1000 units of ore mined is 500 units
of automobile. How do things change if we manage to recycle three-
quarters of the steel in autos? Some of the material now goes through a
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cycle from the fabrication/use node to the shipper through the steel
producer and back to the fabrication/use node. Under this arrange-
ment, with the same 1000 units of ore from the miner, steel production
settles down at 1600 units output, which in turn yields 800 units of auto
at the fabrication/use node. Recycling, with the same raw input,
produces more resource at each node.

That recycling can increase output is not particularly surprising, but
the overall effect in a network with many cycles can be striking. A
tropical rain forest illustrates the point. The soil there is extremely poor
because tropical downpours have a leaching effect that quickly moves
resources from the soil into the river system. For this reason ordinary
agriculture, which does not recycle resources, fares poorly when the
tropical forest is cleared. Yet the forest itself is rich in both species and
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auto engines
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p auto fabrication

steel production @ m = A
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Figure 1.10 Recycling.
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numbers of individuals. This state of affairs depends almost entirely on
the forest’s ability to capture and recycle critical resources. For the forest
departs from the simple version of a food web, in which resources are
only passed upward to the top predator. Instead, cycle after cycle traps
the resources so that they are used and reused before they finally make
their way into the river system. The resulting system 1is so rich that a
single rain forest tree may harbor over 10,000 distinct species (1) of
insects.

DIVERSITY (PROPERTY)

In that same tropical rain forest, in addition to the diversity of insects, it
is possible to walk half a kilometer without twice encountering the
same species of tree. But the rain forest is not an isolated example. The
mammalian brain consists of a panoply of neuron morphologies orga-
nized into an elaborate hierarchy of nuclei and regions; New York City
consists of thousands of distinct kinds of wholesalers and retailers; and
so it goes for each cas in turn.

This diversity is neither accidental nor random. The persistence of
any individual agent, whether organism, neuron, or firm, depends on
the context provided by the other agents. Roughly, each kind of agent
fills a niche that is defined by the interactions centering on that agent. If
we remove one kind of agent from the system, creating a “hole,” the
system typically responds with a cascade of adaptations resulting in a
new agent that “fills the hole” The new agent typically occupies the
same niche as the deleted agent and provides most of the missing
interactions. This process is akin to the phenomenon called convergence
in biology. The ichthyosaur of the ancient Triassic seas filled much the
same niche as the porpoise in modern seas. Though the ichthyosaur is
no kin to the porpoise, it is surprisingly similar in form and habit. It
even preyed on cephalopods (squid and octopuses). And here you have
another convergence. The eye of a squid exhibits all the parts and
complexity of a mammalian eye, yet the two are derived from entirely
different tissues. The two eyes fill the same niche in different physi-
ologies, a niche determined by the interactions eyes must provide.

Convergence of a kind also occurs when an established species enters




28 HIDDEN ORDER

virgin territory. The islands of Hawaii, newly arisen a few million years
ago, constituted virgin territory for a pregnant fruit fly (genus Dro-
sophila) that drifted or was blown there from elsewhere. Over 600
indigenous species of fruit fly have arisen from that founder. Still more
remarkable, these new species fill all sorts of niches that are occupied by
very different fly species elsewhere in the world. The ecosystem inter-
actions are largely re-created, although the agents are quite different.

Diversity also arises when the spread of an agent opens a new
niche—opportunities for new interactions—that can be exploited by
modifications of other agents. Mimicry, a pervasive biological phenom-
enon, is a good example. In North America the most familiar example
of mimicry involves the monarch butterfly (see Figure 1.11). The
monarch is marked by a striking orange and black pattern, but it flies
quite openly in the fields, unlike most butterflies that flit quickly from
cover to cover to avoid predators. The monarch can move so freely
because its caterpillar accumulates a bitter alkaloid from the milkweed
plant; birds quickly learn that the monarch butterfly induces vomiting.
There is a second butterfly, the viceroy, that has a wing pattern almost
identical to that of the monarch but it lacks the monarch’s bitterness. It
mimics the monarch, and thereby gains an important freedom. How
can blind chromosomes generate a complicated pattern that mimics the
pattern of an entirely different species? It's an important question that
we’ll look into later, when we have a better foundation. For now we
simply note the new niche, and the diversity, provided by the presence
of the monarch. :

Mimicry exists at every turn in the rain forest. Insects mimic twigs,

Monarch

Figure 1.11  Mimicry.
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snakes, and even bird splat. Orchids mimic a wide range of pollinators
so well that, as in the case of the bee orchid, they induce copulatory
movements as a means of covering the insect with pollen. The orchid
family itself consists of close to 20,000 species, exhibiting an extraordi-
nary variety of shapes and mechanisms (including pollen-throwing and
clasping devices). Each new species opens still newer possibilities for
interaction and specialization, with still further increases in diversity.

The diversity of cas is a dynamic pattern, often persistent and coher-
ent like the standing wave we alluded to earlier. If you disturb the wave,
say with a stick or paddle, the wave quickly repairs itself once the
disturbance is removed. Similarly in cas, a pattern of interactions dis-
turbed by the extinction of component agents often reasserts itself,
though the new agents may differ in detail from the old. There is,
however, a crucial difference between the standing wave pattern and cas
patterns: cas patterns evolve. The diversity observed in cas is the product
of progressive adaptations. Each new adaptation opens the possibility
for further interactions and new niches.

What mechanisms enable cas to generate and maintain temporal
patterns with such diverse components? Answers to this question are
pivotal to any deep understanding of cas. To have a comprehensive
theory, we must answer this question in way that applies to all cas. A
principle from paleontology applies mutatis mutandis here: to under-
stand species, understand their phylogeny.

We can make some progress in comprehending the origins of diver-
sity if we revisit flows in the light of this paleontological principle. Note
first that the patterns of interaction familiar from ecology—symbiosis,
parasitism, mimicry, biological arms races (see Figure 1.12; Dawkins,
1976, is worth reading on this subject), and so on—are all well de-
scribed in terms of agent-directed flows of resources. Because these
interactions have counterparts in other cas, we can extend this observa-
tion to them as well. From the earlier discussion of recycling, we know
that agents that participate in cyclic flows cause the system to retain
resources. The resources so retained can be further exploited—they
offer new niches to be exploited by new kinds of agents. Parts of a cas
that exploit these possibilities, particularly parts that further enhance
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recycling, will thrive. Parts that fail to do so will lose their resources to
those that do. This is natural selection writ large. It is a process that leads
to increasing diversity through increasing recycling.

We can further enlarge this view if we add some thoughts about

As time passes the plant evolves a ion of hiochemical [‘#]thﬂpdsonthzbmmly
Iarva, while the buttexfly evulves ensymes [é@& ] that neutralize or digest these hiochemicals.

Figure 1.12 A Biological Arms Race.
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nonlinearity. The recycling of resources by the aggregate behavior of a
diverse array of agents is much more than the sum of the individual
actions. For this reason it is difficult to evolve a single agent with the
aggregate’s capabilities. Such complex capabilities are more easily ap-
proached step by step, using a distributed system. This is a point to be
emphasized later when we examine the emergence of default hierarchies
in the next chapter. It should be evident then that we will not find cas
settling to a few highly adapted types that exploit all opportunities.
Perpetual novelty is the hallmark of cas.

INTERNAL MODELS (MECHANISM)

In introducing mimicry, [ mentioned the role of learned avoidance in
birds: insectivorous birds anticipate the bitter taste of butterflies with a
particular orange and black wing pattern. Just how do they do this? This
question, enlarged to encompass all cas, takes us to another hallmark of
cas: they anticipate. To understand anticipation we have to understand a
mechanism that is itself complex—an internal model. I use internal
model to cover much the same ground that Gell-Mann (1994) covers
with his schema. Unfortunately, the word “schema” has become a
fixture in the study of genetic algorithms, designating a related but
different topic. Since both topics appear in this book, I choose to avoid
confusion by using the term “internal model” to refer to the mecha-
nism for anticipation.

The use of models for anticipation and prediction is a topic that, in its
broadest sense, encompasses much of science. It is a difficult topic, but
not impenetrable. In the next chapter we will bring out sufficient
apparatus to discuss the generation of models, but there are some
simpler aspects that we can look at now.

The basic maneuver for constructing models was pointed up in
our earlier examination of aggregation: eliminate details so that se-
lected patterns are emphasized. Because the models of interest here
are interior to the agent, the agent must select patterns in the torrent
of input it receives and then must convert those patterns into changes
in its internal structure. Finally, the changes in structure, the model,
must enable the agent to anticipate the consequences that follow
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when that pattern (or one like it) is again encountered. How can
an agent distill experience into an internal model? How does an
agent unfold the model’s temporal consequences to anticipate future
events?

To make a start on these questions, let’s take a closer look at models as
predictors. We usually ascribe prediction only to “higher” mammals,
rather than taking it as a property of all organisms. Still, a bacterium
moves in the direction of a chemical gradient, implicitly predicting that
food lies in that direction (see Figure 1.13). The mimic survives because
it implicitly forecasts that a certain pattern discourages predators. When

ﬁ Svimming up a glucose

gradient

Even simple bacteria, such
as £ colr, have internal
models provided by evolu-
tion.

Figure 1.13 Internal Models.
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we get to the so-called higher mammals, the models do depend more
directly on the agent’s sensory experience. A wolf bases its movements
on anticipations generated by a mental map that incorporates land-
marks and scents. Early humans built Stonehenge as an explicit, exter-
nal model that helped predict the equinoxes. Now we use computer
simulations to make predictions ranging from the flight characteristics
of untried aircraft to the future gross domestic product. In all these cases
prediction is involved, and in the last two cases external models aug-
ment internal models.

Taking these examples into account, we will find it useful to distin-
guish two kinds of internal models, facit and overt. A tacit internal model
simply prescribes a current action, under an implicit prediction of some
desired future state, as in the case of the bacterium. An overt internal
model is used as a basis for explicit, but internal, explorations of alterna-
tives, a process often called lookahead. The quintessential example of
lookahead is the mental exploration of possible move sequences in
chess prior to moving a piece. Both tacit and overt models are found in
cas of all kinds—the actions and identity supplied by an immune system
fall at the tacit end of the scale, whereas the internal models of agents in
an economy are both tacit and overt.

How do we distinguish an internal model from other pieces of
internal structure that have nothing to do with modeling? We might
start with the critical characteristic of a model: a model allows us to
infer something about the thing modeled. Following this line, we could
say that a given structure in an agent is an internal model if we can infer
something of the agent’s environment merely by inspecting that struc-
ture. Certainly we can infer a great deal about the environment of any
organism by studying relevant pieces of morphology and biochemistry.
Accordingly, we might say that those pieces constitute a tacit internal
model. But, equally, we can infer a meteorite’s history from its compo-
sition and surface condition. It is clearly fruitless, even metaphorically,
to attribute an internal model to a meteorite, so we need something
more in our definition.

There is an additional requirement that will eliminate meteorites and
other inanimate structures. We can require that the structure from
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which we infer the agent’s environment also actively determine the
agent’s behavior. Then, if the resulting actions anticipate useful future.
consequences, the agent has an effective internal model; otherwise it
has an ineffective one. With an appropriate way of connecting future
credit to current actions, evolution can favor effective internal models
and eliminate ineffective ones.

Despite the apparent and real differences between the bacterium’s
tacit model and mammalian overt models, there are important com-
monalities. In both cases the organism’s chances of survival are en-
hanced by the predictions, implicit or explicit, that the model entails.
Thus, variants of the model are subject to selection and progres-
sive adaptation. The timescale for change of the implicit model of
the bacterium or the mimic is orders of magnitude different from the
timescale for change of a mammal’s central nervous system, but the
process of selective emphasis that generates these models is not so differ-
ent as we shall see.

BUILDING BLOCKS (MECHANISM)

In realistic situations an internal model must be based on limited
samples of a perpetually novel environment. Yet the model can only be
useful if there is some kind of repetition of the situations modeled. How
can we resolve this paradox?

We get the beginnings of an answer when we look to a common-
place human ability, the ability to decompose a complex scene into
parts. When we do this, the component parts are far from arbitrary.
They can be used and reused in a great variety of combinations (see
Figure 1.14), like a child’s set of building blocks. Indeed, it is evident
that we parse a complex scene by searching for elements already tested
for reusability by natural selection and learning.

Because reusability means repetition, we begin to see how we can
have repetition while being confronted with perpetually novel scenes.
‘We gain experience through repeated use of the building blocks, even
though they may never twice appear in exactly the same combination.
By way of example, consider the common building blocks for a
human face: hair, forehead, eyebrows, eyes, and so on (see Figure
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7 Building Blocks
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Figure 1.14 Building Blocks (Generators).

1.15). Let’s decompose the face into ten components (one of which is
“eyes”), and let’s allow ten alternatives for each component (as in
“blue eyes,” “brown eyes,” “hazel eyes,”...). We can think of ten
“bags” holding ten building blocks each, for a total of 10 X 10 = 100
building blocks. Then we can construct a face by choosing one
building block from each bag. Because there are ten alternatives in
each bag, we can construct any of 1019 = 10 billion distinct faces with
these 100 building blocks! Almost any new face we encounter can be
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closely described by an appropriate choice from the set of 100 build-
ing blocks.

If model making, broadly interpreted, encompasses most of scientific
activity, then the search for building blocks becomes the technique for
advancing that activity. At a fundamental level, we have the quarks of
Gell-Mann (1994). Quarks can be combined to yield nucleons, the
building blocks at the next level. The process can be iterated, deriving
the building blocks at successive levels from specific combinations of
building blocks at the previous level. The result is the quark /
nucleon / atom / molecule / organelle / cell /... progression that
underpins much of physical science.

We gain a significant advantage when we can reduce the building
blocks at one level to interactions and combinations of building blocks
at a lower level: the laws at the higher level derive from the laws of the
lower-level building blocks. This does not mean that the higher-level
laws are easy to discover, any more than it is easy to discover theorems in
geometry because one knows the axioms. It does add a tremendous
interlocking strength to the scientific structure. We’ll come back to this
point when we discuss emergence in cas.

BUILDING BLOCKS AND RECOMBINATION
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A face can be described by stringing together the numbers that index
its component parts.

Figure 1.15 Building Blocks for Faces.
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It would be a mistake to confine our attention to the building
blocks of physics. Wherever we turn, building blocks serve to impose
regularity on a complex world. We need only look at the use of
musical notation to transmit the endless variety of music, or the use of
a limited range of morphologies to describe the tremendous spectrum
of animal structures. The point applies with at least as much force to
our everyday encounters. If I encounter “a flat tire while driving a red
Saab on the expressway,” | immediately come up with a set of plaus-
ible actions even though I have never encountered this situation
before. I cannot have a prepared list of rules for all possible situations,
for the same reason that the immune system cannot keep a list of all
possible invaders. So I decompose the situation, evoking rules that
deal with “expressways,” “cars,” “tires,” and so on, from my repertoire
of everyday building blocks. By now each of these building blocks has
been practiced and refined in dozens or hundreds of situations. When
a new situation is encountered, I combine relevant, tested building
blocks to model the situation in a way that suggests appropriate
actions and consequences.

This use of building blocks to generate internal models is a pervasive
feature of complex adaptive systems. When the model is tacit, the
process of discovering and combining the building blocks usually pro-
ceeds on an evolutionary timescale; when the model is overt, the
timescale may be orders of magnitude shorter. Still, to reemphasize the
point made both for internal models and in the initial discussion of
adaptation, the underlying adaptive process remains much the same
throughout the range of cas.

Where Next?

The next three chapters combine these seven basics (see Figure 1.16) in
different ways to achieve two goals. The first goal, the object of the next
chapter, is to provide a definition of “adaptive agent” that works for all
the different kinds of agents found in cas. The second goal, to be

pursued in Chapters 3 and 4, is to provide a computer-based model that
has enough generality to allow us to carry out thought experiments
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relevant to all cas. We'll see that the seven basics appear over and over
again, suggesting mechanisms and directions (see Figure 1.17).
Beyond these two goals is a larger objective: to uncover general
principles that will enable us to synthesize complex cas behaviors from
simple laws. Complex adaptive systems are quite different from most
systems that have been studied scientifically. They exhibit coherence
under change, via conditional action and anticipation, and they do so
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Figure 1.16 Seven Basics for Complex Adaptive Systems.
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without central direction. At the same time, it would appear that cas

have lever points, wherein small amounts of input produce large,

directed changes. It should be easier to discover these lever points if we

can uncover general principles that govern cas dynamics. Knowing

provide us with guidelines for

effective approaches to cas-based problems such as immune diseases,

in turn,
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inner-city decay, industrial innovation, and the like. For problems so
complex, it is unlikely that we will make substantial progress without
theoretical guidelines. We are only at the beginning of the search for
general principles, but we do have some hints as to what those princi-
ples might be. I'll set down those hints, as I see them, in the concluding
chapter.



Adaptive Agents

WE RETURN to New York City for a quick illustration
of the outlook provided by the seven basics of the previous chapter.
Agents formed by aggregation are a central feature, typified by firms
that range from Citibank and the New York Stock Exchange to the
corner deli and the yellow cab. These agents determine virtually every
fiscal transaction, so that at one level of abstraction the complex
adaptive system that is New York City is well described by the
evolving interactions of these agents. We have only to look to adver-
tising, trademarks, and corporate logos to see how tags facilitate and
direct these transactions. The diversity of these tags underscores the
variety in the city’s firms and activities, and the complex flow of goods
into, out of, and through the city that results. That New York retains
both a short-term and a long-term coherence, despite diversity,
change, and lack of central direction, is typical of the enigmas posed
by cas. As is usual, nonlinearities lie near the center of the enigma. New
York’s nonlinearities are particularly embodied in the internal models—
models internal to the firms—that drive transactions. These models
range from spreadsheets to sophisticated corporate plans. There are
also continual innovations, such as the steady flux of new financial
instruments on Wall Street (“derivatives,” the current innovation,
have absorbed even more money than their predecessors, “junk

41
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bonds”). Trend projection and other linear analyses provide few in-
sights into these activities. New perceptions will surface, I suspect, if
we can uncover the building blocks that are combined and recombined
to determine the city’s outward appearance. The building blocks for
this enterprise are less obvious than for some other cas, though con-
tracts, organization charts, permissions, pieces of city infrastructure,
and taxes are all obvious candidates.

This view of New York City is no less intricate than other ways of
describing this urban setting, but it does suggest that the city is not all
that different from other cas. We have already seen these same basic
characteristics in various cas, and it is not particularly difficult to locate
them in still others. They are distinctive, and I know of no systems that
are not complex adaptive systems in which all seven are present simul-
taneously. That does suggest treating all cas within a common frame-
work that exploits these basics. However, there is one feature of cas that
tempers this suggestion. The agents in different systems, even within
the same system, exhibit real dissimilarities. Firms in a city don’t seem
to have much in common with antibodies, and organisms in an ecosys-
tem don’t look at all like neurons in the nervous system. Is it really
possible to find a common representation for these very different
agents? If so, a uniform approach to cas is feasible; if not, a uniform
approach seems unlikely. A common representation for agents, then, is
our next objective.

Let’s explore the possibilities in three stages. First, we’ll look
for a uniform way to represent the capabilities of different kinds
of agents, without any concern for changes that might be produced
by adaptation. I'll call the result a performance system. The next
stage is to use the agent’s successes (or failures) to assign credit
(or blame) to parts of the performance system. I'll call this process
credit assignment, following usage in other studies of learning and
adaptation. The last stage concerns making changes in the agent’s
capabilities, replacing parts assigned low credit with new options.
For reasons that will become apparent, I'll call this procedure rule dis-
covery.
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A Performance System

The first step in arriving at a common description of agents is actually a
return to the description of adaptive agents in the early part of the last
chapter. There we used rules as a descriptive device; now we take rules
more seriously as a formal means of defining agents. For the rules to be
a successful unifying device, applicable whatever the agent’s outward
form, they must meet three criteria:

1. The rules must use a single syntax to describe all cas agents.

2. The rule syntax must provide for all interactions among
agents.

3. There must be an acceptable procedure for adaptively modify-
ing the rules.

As in the last chapter, we look first at the simplest kind of rule: IF
(some condition is true) THEN (execute some action). IF/THEN
rules are used for explanation in a wide variety of fields: in psychology
they are called stimulus-response rules (see Figure 2.1); in artificial
intelligence they are called ¢ondition-action rules; and in logic they are
called production rules. Our immediate objective is to find a simple

STIMULUS - RESPONSE

C =

A

IF  SMALL FLYING OBJECT TO LEFT

THEN  TURN HEAD 15° LEFT

Figure 2.1 A Stimulus-Response Rule.
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syntax for IF/THEN rules, a syntax that will work for any kind of
agent. Later we will add a simple modification that gives IF/THEN
rules enough power to model any agent that can be modeled on a
computer.

INPUT/OUTPUT

The syntax we use for the IF/THEN rules depends critically on the
way an agent interacts with its environment. Let’s start with the input
side. In ordinary terms, an agent senses the environment via an assort-
ment of stimuli. If the agent is an antibody, the stimuli are the molecular
configurations—tags—on the surfaces of the antigens. If the agent is a
human, the stimuli come through the five senses. If the agent is a
business firm, the stimuli are orders, cash flow, incoming goods, and so
on. Typically, an agent is inundated with stimuli, receiving far more
information than can be put to use.

The agent’s first task, then, is to filter the torrent of information its
environment produces. To describe this filtering operation, [ adopt
the common view that the environment conveys information to the
agent via a set of detectors. The simplest kind of detector is one that
senses a particular property in the environment, turning “on” when
the property is present and “off” when it is not (see Figure 2.2). That
is, the detector is a binary device that conveys one bit of information
about the environment. Such detectors might seem quite limited in
their ability to sense the environment, but an arbitrarily large amount
of information can be conveyed by a sufficiently large cluster of
detectors. Indeed, the amount of information conveyed goes up ex-
ponentially with the number. of detectors. A set of three binary
detectors can code for 2 X 2 X 2 = 23 = 8 colors; a set of twenty
detectors, using a variant of the “Twenty Questions” game, can
produce a unique stimulus for each of 220, more than a million,
distinct categories.

It is worthwhile to emphasize, concerning detectors, a caution ear-
lier invoked for rules. This discussion of detectors is not a claim that all
cas agents use binary detectors. It is, rather, a claim that we can use
clusters of binary detectors to describe the way agents filter information
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from the environment; we can translate other means of detection into
this format. The value of binary detectors in this discussion rests on
their usefulness in modeling arbitrary adaptive agents.

By means of binary detectors we can use standardized messages,
binary strings, to represent the information selected by the agent. Can
we extend this standardization to the agent’s output side? The actions of
cas agents are, after all, as various as their ways of extracting information
from the environment. We can gain some ground in regularizing
output by “inverting” the function performed by detectors. Let me
describe the agent’s actions in terms of a set of effectors. Each effector has
an elementary effect on the environment when it is activated by an
appropriate message (Figure 2.2). At any given time, the overall re-
sponse of the agent is generated by the cluster of effectors active at that
time. That is, the effectors decode standardized messages to cause actions
in the environment. In so doing, the effectors “invert” the procedure
used by the detectors to encode environmental activity into standardized
messages. As with detectors, we use effectors as a descriptive device for
modeling the adaptive agent output.

PROCESSING AND SYNTAX

With this description of the input and output of agents in terms of
messages, it seems advantageous to handle interactions of the agent’s
rules in the same way. Providing for rule interaction is the critical step

Detectors Effectors
moving flee
strped pursue

large g 9 twmn head
near Performance extend tongue
System
. .
. *
.
Environment

Figure 2.2 Detectors and Effectors for a Performance System.
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that gives simple IF/THEN rules the full power of a programming
language. For one IF/THEN rule to interact with another, it must be
that the IF part of one of the rules is sensitive to the actions specified by
the THEN part of the other rule. If we think of each rule as a kind of
microagent, we can extend the input/output role of messages to pro-
vide for interactions. Think of each rule as having its own detectors and
effectors or, more to the point, think of each rule as a message-
processing device. The rule then has the form

[F (there is a message of the right kind) THEN (send a specified
message).

That is, an agent is described now as a collection of message-processing
rules (see Figure 2.3). Some rules act on the detector-originated mes-
sages, processing information from the environment, and some rules act
on messages sent by other rules. Some rules send messages that act on
the environment, through the agent’s effectors, and some rules send
messages that activate other rules (see Figure 2.4).

IF SMALL FLYING OBJECT CENTERED

THEN senp (@]
IF

THEN EXTEND TONGUE

A message, represented here by the uninterpreted symbol @, is typically represented by an
uninterpreted hit string in implementations.

Figure 2.3 A Small Message-Passing Rule-Based System.
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Figure 2.4 A Message-Passing Performance System.

With this description as a guide, we can develop a general syntax
for cas agents (see Figure 2.5). We begin with the allowable messages.
For simplicity of exposition, assume that all messages are binary
strings, strings of 1’s and 0%, and that they are all of standard length.
(The last assumption means that messages are much like the binary
strings stored in the registers of a computer.) Neither of these assump-
tions is really necessary, but neither causes any serious loss of gen-
erality—and they do simplify presentation. Notationally, a message

has the form
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10010111 ... 1
| « L = |

where L is the length of the standard message. The set of all possible
messages, M, is thus the set of all strings of 1’s and 0s of length L. The
formal designation of this set is {1,0}%.

Next we must provide a syntax for the condition side of the rules, a
syntax that specifies which messages the rule responds to. Again, there
are many ways to do this, but one of the simplest is to introduce a new
symbol #, which can be interpreted as “anything is acceptable at this
position.” More colloquially, it is a “don’t care” symbol. Consider the
string of symbols

Vit %
| « L - |

used as the condition part of a rule. This condition responds to any
message that starts with a 1, not caring what digits appear at the other
L—1 positions. Similarly, the string

\moving, blue, small, near, ...

Message from detectors
Rule (1) IF (moving)(#) ... (¥) TEEM flee
X » Rule(2) IP (moving)(#)(small)(near)TEEN approach

Key: ¥ = "don’t care” (rule does not use this
property)
A condition that uses more ¥'s accepts

a wider range of messages — it is more
general.

Figure 2.5  Syntax for a Performance System.
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ddrdbd 140
| « L - |

represents a condition that responds to any message that has a 1 at the
second to last position, L—2, and a 0 at the last position, L. Under this
arrangement the set of all possible conditions, C, is the set of all strings
of 1%, 0%, and #’ of length L. The formal designation of this set is
{1,0,3%)L.

Because the only action of a rule in this format is to post a message,
all rules have the form

IF (condition from C satisfied) THEN (send message from M).
For example, with L=5, the rule
IF (13##4) THEN (00000)

will transmit the message 00000 if it detects any message starting with a
1. The similar rule

IF (10101) THEN (00000)

will transmit the message 00000 only if it detects the specific message
10101.

With the two sets, M = [1,0)L- and C = {1,0,3}E, and this format for
rules, we have the capacity to describe the behavior of a wide variety of
agents. A particular agent is described by setting down the cluster of
rules, in this fixed format, that generates its behavior. Rules so defined
act much as instructions in a computer, the cluster serving as a program
that determines the agent’s behavior. If there is any way to model an
agent on a computer, these technical conditions guarantee that it can be
modeled using a cluster of rules in this format. To get full computa-
tional power we must give our rules two independent conditions, IF
( )AND IF ( ) THEN ( ), and provide them with negation, IF
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NOT () THEN (), butwe can ignore these refinements for present
purposes. i

With this syntax we have a uniform, rule-based technique for mod-
eling agents, be they neurons, antibodies, organisms, or business firms.
Figures 2.1 and 2.3, not to be taken too seriously, illustrate the use of a
rule or two to capture one facet of the behavior of a frog (the abstract
symbols emphasize the arbitrariness of the bit-strings that encode the
messages).

SIMULTANEOUS ACTIVITY—PARALLELISM

Before proceeding further we must make a careful distinction between
the different uses of messages in this system. The detector-originated
messages have a built-in meaning assigned by the environmental prop-
erties detected. The rule-originated messages, on the other hand, have
no assigned meaning except when they are used to activate effectors.
They acquire meaning in terms of their ability to activate other rules. It
1s important to differentiate these two kinds of messages. Otherwise,
rule-originated messages might be taken as coming from the environ-
ment, producing “hallucinations” for the agent. The distinction is
usually accomplished by assigning identifying tags to the two kinds of
messages.

Because rule-originated messages have no built-in meanings (setting
aside for the moment messages that activate effectors), we are not faced
with contradictions when several rule-originated messages are present
at the same time. That means we can have several rules active simul-
taneously without fear of contradiction; more rules active simply mean
more messages. This is a substantial advantage. We have a system that
can model the concurrent activities typical of cas and, as we will see, we
can use messages as building blocks for modeling complex situations.

To exploit this advantage we provide the agent with a kind of
inventory, a message list, that stores all current messages. A useful, if
somewhat fanciful, metaphor for thinking about an agent’s perfor-
mance under this arrangement is an office in which there is a large
bulletin board. The workers in the office are assigned desks, each of
which has responsibility for responding to certain kinds of memos on
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the bulletin board. And, of course, the output of each desk is more
memos. At the beginning of the day the workers take down the memos,
they process them throughout the day, and at the end of the day they
post the new memos that have resulted from their efforts. In addition,
some memos come in from outside the office, and some memos go
from the office to the outside. Under this metaphor, the agent corre-
sponds to the office, the memos to messages, the bulletin board to the
message list, the desks to rules, memos from outside the office to
detector-originated messages, and memos to the outside correspond to
effector-directed messages. In the agent, as in the office, many activities
go on simultaneously, and only some of them are visible on the outside.

This provision for simultaneously active rules helps us understand an
agent’s ability to handle a perpetually novel world. It contrasts sharply
with an approach wherein the agent has only a single rule for each
situation. With the single-rule approach, the agent must have rules
prepared for every situation it may plausibly encounter. This poses a
problem analogous to the one we discussed earlier for the immune
system. An agent is unlikely to have a single rule adequate for each
situation it encounters for the same reason that the immune system
lacks a set of antibodies prepared ab initio for all possible invading
antigens—there are just too many possibilities. With simultaneously
active rules, the agent can combine tested rules to describe a novel
situation. The rules become building blocks.

By way of example, consider someone in the unfortunate circum-
stance of having a “flat tire while driving a red Saab on the expressway.”
Most of us have not driven a Saab, let alone had a flat tire while driving
one, but we would not be at a loss for an appropriate response. The
reason would seem to be that we decompose the situation into familiar
parts. Most of us have had some experience with flat tires, or at least
know procedures for dealing with them. Most of us have driven on an
expressway. And so on. We can describe this in terms of rules for
dealing with components of the situation. In terms of our syntax for
rule-based agents, this means rules of the form IF (flat tire while
driving) THEN (slow down), IF (on an expressway with a flat) THEN
(pull into breakdown lane), and so on, encoded in the C/ M syntax
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(see Figure 2.6). These rules, evoked simultaneously by the detector-
originated messages and by other rules, activate the appropriate eftector
sequences. Of course, in a real situation there would be many overtones
not captured in this simple example. There would be messages and
active rules corresponding to short-term memory (recent happenings
on the expressway), objectives of the trip, and so on. Hundreds of rules
might be active, but the principle of decomposing the situation, and
relevant history, into familiar building blocks would be the same.

g TEIBN

slow, pull to trouble
lane, get spare

flat tire while driving red Saab on expressvay

— contrasted with rules a5 building blocks —

¥ tag properties TEIEN action
make condition{ motion
car ¥ ¥ skid ¥ turn toward skid
F_~'|| car #  flat tiremovi : 3 slow down |
car ¥ ioil low stopped turn off ignition

coe

road type | car cond. {road sign

road ¥ good : none continue at speed limit
road & stopsign ¥ ¥ prepare to stop
—I  road | =xway | flat 3 F] pull to trouble lane |

get spare 1
tire small | low & ¥ use tire pump

see

Figure 2.6 An Example of Rule Parallelism.
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Adaptation—By Credit Assignment

We have said nothing so far about the agent’s ability to adapt. We have
described the agent’s performance system, its capabilities at a particular
point in time. Now we have to look into ways of changing the system’s
performance as it gains experience.

The first step is to look more closely at the role of rules in the
performance system. The usual view is that the rules amount to a set of
facts about the agent’s environment. Accordingly, all rules must be kept
consistent with one another. If a change is made or a new rule is
introduced, it must be checked for consistency with all the other rules.

There is another way to consider the rules. They can viewed as
hypotheses that are undergoing testing and confirmation. On this view,
the object is to provide contradictions rather than to avoid them. That
is, the rules amount to alternative, competing hypotheses. When one
hypothesis fails, competing rules are waiting in the wings to be tried.
My inclination is toward this latter view.

If there is to be a competition, there must be some basis for resolving
it. It is also clear that the competition should be experience based. That
is, a rule’s ability to win a competition should be based on its usefulness
in the past. The objective is closely related to the statistician’s concept of
building confirmation for a hypothesis. We want to assign each rule a
strength that, over time, comes to reflect the rule’s usefulness to the
system. The procedure for modifying strength on the basis of experi-
ence is often called credit assignment.

Credit assignment is a relatively easy task when the environment
produces direct payoff (reward, reinforcement) for an action. If we turn
a key and the car starts, that action quickly becomes part of our
repertoire. Credit assignment is much more difficult when some early
stage-setting action makes possible a later useful outcome. The problem
is clearly exposed if we examine the play of a board game, say checkers.
Taking a triple jump in checkers, when possible, almost always leads to a
win and, as with the ignition key, it is easy to credit a rule that takes that
action. But how should a neophyte credit a rule when that rule’s action
is followed four moves later by the triple jump option? How does the
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neophyte know it was that rule, not some rule acting earlier or later, that
was critical in setting the stage? Or perhaps the outcome was simply a
mistaken move on the part of the opponent. Yet good play in checkers,
and sophisticated actions in cas, depend on crediting anticipation and
stage setting.

The credit-assignment problem becomes still more complicated
when we consider a performance system with many rules active
simultaneously. As the system continues to adapt, some rules will be
useful and some will not. Some will decompose the environment in
ways that offer useful guides to action and some will not. Moreover,
long periods often elapse before the consequences of current action
are obvious. Some actions can be hurtful in the short run but helpful
in the long run, much like a gambit in chess. With all of these
impediments, how does an agent determine which rules are helpful
and which are obstructive?

Here we can use another metaphor to advantage, a standard link
between competition and capitalism. Each rule can be treated as a
producer (factor, middleman) buying and selling messages. The “sup-
pliers” to a rule are those that send messages satisfying its condition(s);
the “consumers” for a rule are those that act on its message. A rule’s
strength is treated as its cash in hand. When a rule buys a message, it
must pay for it from its cash in hand; that is, its strength is reduced.
When a rule sells a message, its strength is increased by the amount paid
to it by the buyer (see Figure 2.7).

supplier rule R consumer

message message for R

4‘-.4..@@ W@ FAG

payment payment
[6] (8]

R after transaction: =60-6+8

Stage-setting rules leading to reward become strong.

Iy

Figure 2.7  Credit Assignment—Changing Rule Strength.
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Competition is introduced through a bidding process (see Figure
2.8). Only rules that have their conditions satisfied are eligible to bid,
and only the winners gain the right to post (“sell”) their messages. The
size of a rule’s bid is determined by its strength. Stronger rules bid more.
The winners then pay their suppliers; the losers pay nothing.

After winning, the winners have less strength and their suppliers
have more strength. The winners, however, have gained the right
to post their messages, with the possibility that they will have con-
sumers that will bid and pay. In this setting, a winning rule will
thrive—get stronger—only if its consumers pay more than the
amount bid in the first place. The old capitalist adage holds: buy cheap
and sell dear!

Just how does this spate of buying and selling help the adaptive agent
solve its credit-assignment problem? To make the connection, we must
determine the ultimate consumers (buyers). They are the rules that are
active when the agent receives an overt reward from the environment.
The agent knows that these actions are desirable, as in the case of the
triple jump, so the rules directly responsible are automatically strength-
ened. We can think of the overt reward as being shared among the rules

‘)

}_é
.

IF OBIJECT TO LEFT THEN TURN HEAD 15° LEFT
IF OBJECT TO LEFT THEN TURN HEAD 15° RIGHT

Rules act as competing hypotheses; the stronger the rule
the more likely it is to win the competition.

Only winning rules post their messages.

Figure 2.8 Rule Competition in a Parallel Rule-Based System.
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active at the time of reward. This is much like Pavlovian conditioning,
with immediate reinforcement of desirable actions.

Now consider any rule that is an immediate supplier of a strength-
ened “ultimate-consumer” rule. Assume that this supplier helps set the
stage, making it possible for the ultimate-consumer rule to evoke a
reward from the environment. As the rewards make the ultimate-
consumer rule stronger, it makes larger bids because its bids are propor-
tional to its strength. The supplier in turn becomes stronger because of
the larger payments it receives. After a while, the suppliers of the
supplier will benefit from this increasing strength if they set the stage for
the supplier. We can iterate this argument over any chain of suppliers
that progressively sets the stage for some overtly rewarding action. All
rules in the chain will eventually be strengthened because of the pro-
gressive strengthening of their consumers.

A question: What if the supplier rule sends a message that activates
an ultimate-consumer rule, but “cheats” by not appropriately setting
the stage for the consumer’s action? The consumer rule will then,
of course, not be rewarded, even though it has paid its supplier. It
will have paid without being paid, with a corresponding reduction
in its strength. As a consequence, the next time around, the cheating
supplier will be paid less by the consumer. Because the supplier is
earlier in its strength-building process than the ultimate-consumer
rule, its strength will soon fall below the point where it can win
competitions. This is particularly true if there are other rules that do
set the stage for the ultimate-consumer rule. Cheaters do not thrive
under this regime. Again, this argument can be iterated over any chain
of suppliers.

This credit-assignment procedure, which I call a bucket brigade algo-
rithm, strengthens rules that belong to chains of action terminating in
rewards. The process amounts to a progressive confirmation of hypoth-
eses concerned with stage setting and subgoals. Theorems from mathe-
matical economics can prove this outcome for statistically regular
environments, and computer simulations show that it works in a wide
variety of environments, particularly when combined with the rule
discovery process.
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INTERNAL MODELS

There is a modification to the bidding process that furthers the con-
struction of internal models. It is based on the intuition that, other
things being equal, an agent should prefer rules that use more informa-
tion about a situation. In our syntax, the amount of information used
by a rule depends upon the number of # in the rule’s conditions. A
rule is more specific if it has fewer #’ in its conditions (see Figure 2.5).
For instance, the condition ## ... ¥ accepts any message, so it
provides no information whatsoever when it is satisfied. At the other
extreme, the condition 11 . .. 1 is satisfied by one specific message, a
string of 1%, providing the maximum possible information. To imple-
ment the preference we must modify the bidding process. The simplest
way is to make the bid proportional to the product of strength and
specificity. That way, if either the strength or the specificity is close to
zero, the bid will be close to zero; only if both are large will the bid be
large.

Consider now a competition between a more specific rule, r1, and a
less specific rule, r2. For a concrete example (see Figure 2.9), let rl be
the stimulus-response rule

IF (there’s a moving object in the environment) THEN (flee),
and let 72 be the stimulus-response rule

IF (there’s a small moving object nearby in the environment)
THEN (approach).

Any message concerning a moving object will satisfy r1, but only a
subset of those messages will satisfy r2, namely those messages pro-
claiming the additional properties that the object is small and nearby.
However, when there is a small moving object nearby, r1 and 12 will be
in direct competition. If 11 and 12 are roughly equal in strength, r2 will
have the advantage because of its higher specificity. That is, 72 makes a
bigger bid because it uses more information about the situation.
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ﬂwmg,Tblue, small, near, ...

Message from detectors
| Rule (D) IF (moving)(#) ... (¥) TEEN flee
& » Rule(2) IF (moving)(#)(small)(near) TEEM approach

set of all moving objects
~

Rule @correct Rule (1) incorrect

Rule (2)

correct

I 4 set of moving, smallJ
J near objects

Figure 2.9 A Rule-Based Default Hierarchy.

We are now in a position, for the first time, to discuss the formation
of internal models. In effect, the two rules r1 and 2 form a simple
model of the environment. It is an apparently unresolved model, be-
cause r1 and r2 are contradictory when they are active simultaneously.
However, a closer look at this contradiction reveals a kind of symbiosis
between these two rules. Assume this agent, a “frog,” lives in an
environment where most moving objects, “herons” and “raccoons,”
are dangerous, but small moving objects, “flies,” are prey. The more
general rule, r1, becomes a kind of default to be used when detailed
information is lacking: “If it’s moving, it’s dangerous.” Still, if this rule
were always invoked, the frog would starve to death because it would
flee its food, flies as well as everything else. The more specific rule, 12,
on the other hand, advocates the correct action when flies are around. It
provides an exception to the default rule, and because it is more specific
it outcompetes the default when the additional constraints “small and
nearby” are present. The following argument reveals the symbiosis.
Every time the default r1 makes a mistake, it loses strength. When 12
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wins, preventing the mistake, it saves r1 the loss. Thus, the presence of
12, though it contradicts r1, actually benefits 1. The two rules together
provide the frog with a much better model of the environment than
either alone would provide.

In forming internal models with the present syntax, we will find it
easier to discover and test a general rule than a specific one. To see
this, consider an agent that has L = 100 detectors. The simplest
condition that uses any information at all is one that relies on a single
detector, having ¥ for all other detectors. A case in point would be
the default rule for our frog, which uses only the property “moving.”
Just how many distinct conditions are there that rely on only one of
the 100 detectors? We can count them as follows. Select any one of
the 100 detectors (positions) as the property we're interested in. We
then have to decide whether the condition is to require the property
to be present (1) or absent (0). That is, we can select any one of 100
positions, and there are two possibilities for the position. So there are
just 200 different possible conditions that use only a single detector.
All 200 of these conditions could be tested for usefulness in a short
time.

At the other extreme is a condition that uses all of the detectors.
Here, we have to select one of the two possibilities, present (1) or absent
(0), for each of the 100 positions. So there are

2X2X2...X2=2100=103%
| « 100 — |

distinct conditions of this kind. This huge number is much larger than
the estimated lifetime of the universe measured in microseconds.
Clearly, it is not feasible for an agent to try all such conditions.
General conditions are not just fewer in number, they are also
tested more frequently by the agent in typical environments. As a trial,
let’s assume that all messages from the detectors are equally likely.
Then a given detector will be on (1) about as frequently as it is off (0).
This is the same as saying that about half of all messages will have a given
value, say 1, for a given detector. Consider then the general condition
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14k4F4. . . #. It will be satisfied about half the time! It is being tested
quite frequently, so credit assignment will quickly designate an appro-
priate strength to a rule using this condition.

Contrast the only slightly more specific condition 103 ## . . . #.
Half of the messages will contain a 1 at the first position, but only half of
those will also have a 0 at the second position. That is, only
/2 X V2 = Vi of the messages will satisfy 10444 . . . 4, so that condi-
tion gets tested only half as often as 1344 . . . #. It is easy to see that
the testing rate drops by Y5 for each additional detector value used by the
condition.

DEFAULT HIERARCHIES

Obviously, useful general conditions—defaults—are relatively easy to
find and establish. The more specific exception rules take progressively
longer to find and establish. This suggests that, under credit assignment,
agents early on will depend on overgeneral default rules that serve
better than random actions. As experience accumulates, these internal
models will be modified by adding competing, more specific exception
rules. These will interact symbiotically with the default rules. The
resulting model is called a default hierarchy (see Figure 2.9). Of course,
evolution may have “wired in” some specific rules (reflexes, for in-
stance) produced by generations of genetic selection. It may also hap-
pen that highly specific conditions develop in response to a common,
salient detector-message. But neither of these cases contradicts the
principle that default hierarchies expand over time from general default
to specific exceptions.

Now we need to look at the mechanisms an agent can use to
generate candidates for the default hierarchy.

Adaptation—By Rule Discovery

The first process that comes to mind for rule generation is to carry outa
kind of random trial and error, making limited random changes in the
rules already in place. This procedure may work on occasion, but it
does not make much use of system experience. Truly random changes
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are like coin flipping: what happens next does not depend on what has
happened before. To make random changes in a complicated internal
model such as a default hierarchy, in the hopes of improving it, is much
like making random changes in a complicated recipe. Most changes will
not be for the better.

What other options are there? We’ll do better if we can assure some
kind of plausibility for the newly generated rules: they should not be
obviously wrong when viewed in the light of past experience. In most
cases, plausibility arises from the use of tested building blocks. If we go
back to the “flat tire while driving a red Saab on the expressway,” we see
that plausibility resulted from using well-known building blocks to
describe the new situation. If we follow this line, the idea would be to
find components—building blocks—for individual rules. Then, intu-
ition would say, a component that consistently appears in strong rules
should be a likely candidate for use in new rules. With enough strong
rules, and useful ways of locating components in them, we can generate
a vast number of new rules without ever departing from tested compo-
nents. The new rules are only plausible candidates—they may not
prove out—but the process should be considerably more efficient than
random trial and error. And, of course, there may be ways of discover-
ing new rule components, opening new ranges for testing.

A brieflook at the role of tested building blocks in technical innova-
tion will help us understand the role of building blocks in the specific
case of rule innovation. A scan of history shows that technical innova-
tions almost always arise as a particular combination of well-known
building blocks. Take two technological innovations that have revolu-
tionized twentieth-century society, the internal combustion engine
and the digital computer. The internal combustion engine combines
Volta’s sparking device, Venturi’s (perfume) sprayer, a water pump’s
pistons, a mill’s gear wheels, and so on. The first digital computers
combined Geiger’s particle counter, the persistence (slow fade) of
cathode ray tube images, the use of wires to direct electrical currents,
and so on. In both cases most of the building blocks were already in use,
in different contexts, in the nineteenth century. It was the specific
combination, among the great number possible, that provided the
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innovation. When a new building block is discovered, the result is
usually a range of innovations. The transistor revolutionized devices
ranging from major appliances to portable radios and computers. Even
new building blocks are often derived, at least in part, by combining
more elementary building blocks. Transistors were founded on knowl-
edge of selenium rectifiers and semiconductors.

SCHEMATA

What about building blocks for rules? The most direct approach, for the
rule syntax used here, exploits the values at selected positions in the rule
string as potential building blocks. For instance, we can ask whether or
not it is useful, on average, to start a condition with a 1 at the first
position. In the earlier example of the frog, the first position corre-
sponds to the movement detector. For the frog, the question about
using a 1 at the first position as a common building block for new rules
translates to a question about the importance of movement in the
environment.

This approach, treating the values at individual positions as building
blocks, corresponds closely to the classical approach for evaluating the
effects of individual genes on a chromosome. Each gene has several
alternative forms, called alleles. The different alleles for the human gene
for eye color, for instance, produce blue eyes, brown eyes, green eyes,
and so forth. Or we can look to Mendel’s experiments with pea plants
(nicely described in Orel, 1984)—the experiments that founded ge-
netics. Among the genes Mendel investigated was one that controlled
the surface texture of the peas. One allele produced a smooth-surfaced
pea, another produced a rough surface. Genes commonly have alterna-
tive forms, and these different forms usually have distinct observable
effects on the organism. The objective in genetics, as it is for rules, is to
determine the effects of different alternatives at different positions.

In mathematical genetics there is a classical approach to determining
these effects. It is to assume that each allele contributes something,
positive or negative, to the overall fitness of the organism. The contri-
bution is estimated by looking at the average fitness of all the individuals
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carrying that allele. Smooth-surfaced peas might tend to sprout more
often, so the smooth-surface allele would be assigned an appropriate
positive contribution. At least in principle, we could proceed through
each of the genes and alleles in this way, determining the contribution
of each. The overall fitness (value, strength) of any chromosome would
be the sum of the contributions of its constituent building blocks, the
alleles.

There are two major difficulties with the position-by-position ap-
proach. First of all, a given allele may have different effects in different
environments. Blue eyes may be valuable in the far north and detrimen-
tal at equatorial latitudes. More important, alleles interact. It is rare that
the effects of any gene can be isolated, as in the special cases of eye color
or surface character. Particular genes affect many characteristics and the
effects of different genes ovetlap. In short, fitness in a given environ-
ment is a nonlinear function of the alleles.

When we change focus from genetics to IF/THEN rules, the first of
these difficulties is handled automatically. The conditional part of the
rule—the IF—automatically selects the “environment” in which the
rule will act. So the evaluation of the parts of the rule proceeds only in
the environments for which it is designed. The second difficulty—
nonlinearity—is not so easily disposed of, whether in genetics or rules.
I am about to propose an approach that works for both.

To begin, we must allow for building blocks that use more than a
single position in the string. That is, we would like to allow a building
block that encompasses the first three positions, or a building block
that encompasses positions 1, 3, and 7. For our frog this could be a
building block that amalgamates “moving,” “small,” and “nearby” We
need a simple way to designate such a building block. The fact that we
want to look at some specific positions and ignore others suggests that
we make new use of the “don’t care” symbol that was helpful in the
syntax for rule conditions. Let’s use a new symbol, “*,” so we don’t
confuse the two uses. If we are interested in a building block that
places a 1 in the first position of a condition, we designate that
building block by
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Phxrkx ok
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if we are interested in a building block that places a 1 at the first
position, a ¥ at the third position, and a 0 at the seventh position, we
designate that building block by

[xdpkQRn | >
| « L = |

A building block defined in this way is called a schema; the positions in
the string that contain symbols other than a * are called the defining
positions of the schema.

Note that the # plays a very different role from the *. Recall that the
set of all possible conditions for rules is specified formally as {1,0,3%)L,
the set of all strings of length L using the alphabet {1,0,3}. Each
condition specifies a set of messages it will accept. We can interpret a
schema in a similar way. In defining the schema, we constrain some of
the positions in the condition, the defining positions, to have one of the
values from {1,0,%}, and we make no requirement on the remaining
conditions, indicating this by a *. Formally, then, the set of schemata for
conditions is the set of all strings of the form {1,0,3,*}L. An individual
schema from {1,0,3,*}L specifies the set of all conditions that use that
building block, much as an individual condition from {1,0,3 )L specifies
the set of messages it accepts.

This mathematical convention, that the condition is identified with
the set of messages it accepts, while the schema is identified with the set
of conditions that contain it as a building block, helps distinguish #
from *. The condition 1#111 ... 1 accepts exactly two messages,
10111 ...1 and 11111 ... 1. The schema 1*111 ... 1, on the other
hand, appears in three distinct conditions, 1#111...1, 10111...1,
and 11111 ... 1. The first of these conditions accepts the two mes-
sages, 10111 ... 1and 11111 . .. 1, but the second condition accepts
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only one message, 10111 ... 1, and the third condition also accepts
only one message, 11111 . .. 1. The * helps us define different sets of
conditions, while the 3 helps us define different sets of messages.

CROSSING OVER AND THE FITNESS OF SCHEMATA

With this notion of building blocks in hand, we can discuss the genera-
tion of plausible new rules in a careful way. It turns out that the
metaphor from genetics can be extended to suggest an actual pro-
cedure. The metaphor thus far is the following. The gene positions on
the chromosome correspond to the positions on the string defining the
rule; different alleles correspond to the different values {1,0,3} that can
be placed at each position in the rule string. We can go further.
Mathematical genetics commonly assigns a numerical value, called
fitness, to each chromosome. That value indicates the ability of the
corresponding organism to produce surviving offspring, as in the case
of Mendel’s peas. In similar fashion, the strength assigned to a rule
under credit assignment measures the rule’s usefulness. If “survival” is
mapped to “usefulness,” then fitness corresponds closely to strength. To
extend the metaphor, then, let’s treat strength as the counterpart of
fitness.

The extension suggests a procedure. Fit organisms are successful
parents, producing offspring that grow to be parents in turn. This
analogy suggests treating strong rules as parents. Some useful ideas
follow from this correspondence.

m Offspring typically coexist with the parents, usually replacing
other, weaker contenders in the environment. In a rule-based
system this arrangement is important, because strong rules
represent knowledge won. Under competition, strong rules
usually determine the agent’s actions, so they are the core of the
agent’s internal model.

m Offspring are not identical to the parents, so this is a genuine
discovery process. Offspring, in both genetics and rule-based
systems, amount to new hypotheses to be tested against the
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environment. In genetics an interaction called crossing over
causes the characteristics of the parents to appear in new com-
binations in the offspring. It is this recombination of sets of
alleles that is most interesting from the point of view of rule
discovery, so we will discuss it at length.

Crossing over is the mechanism that breeders exploit when they
cross-breed superior plants and animals. It is a close-to-literal descrip-
tion of what happens to a pair of chromosomes when they exchange
genetic material. During the phase when the germ cells are being
formed (meiosis), a chromosome from one parent may cross over the
chromosome from the other parent, forming a kind of X-shape (this
arrangement can actually be seen in micrographs of the DNA). Then,
say, the “upper arms” of the X are exchanged (see Figure 2.10). The
result, after separation, is a pair of chromosomes that differ from the
parental chromosomes. Each contains a segment, from the “tip” to
the point of crossing, from one parent and then continues to the other
end with a segment from the other parent.

We know that crossing works well in combining superior charac-
teristics of corn or race horses, but is it subtle enough to work with
rules? In the case of the corn or race horses, we know what characteris-
tics we want to enhance, and we select the parents accordingly. When
we look to rule-based agents, we have no a priori list of characteristics.
Our only measure is the overall strength of each rule. Individual build-
ing blocks (sets of alleles) within the rule do #ot have individual values.
How can we make judgments about individual building blocks? More
to the point, can crossing over implement such judgments automat-
ically?

Let’s start with the question of estimating the value of building blocks
(schemata) when our only data are the strengths of whole rules. Note
first that simple schemata—schemata where almost all positions are
occupied by *’s—will have many occurrences in an agent with many
rules. For example, if the agent has many rules, a large portion of them
will usually start with a 1. All are exemplars of the schema 1%%*  *,
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Intuition would say that that schema is a useful building block if the rules
that contain it are, on average, stronger than other rules. To capture this
intuition precisely, we must be able to compare the average strength of
the rules carrying 1*** .. * to the overall average strength of the
agent’s rules. Call the average strength of all the agent’s rules A. First
determine A, then determine the average strength of the rules using

Crossover Operator

crossover point
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(T110#%## 1102

# #]

Genetic Algorithm

Strength Cross-
Parents [fitness] over Offspring
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Figure 2.10  Crossover and Genetic Algorithms.
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1x%xx % Call the latter S(1*** ... *) We consider the schema
1*** % as better than average if S(1*** . . . *) is greater than A.

Because this is only an estimation procedure, it can be wrong in
particular cases. It may be that the agent’s rules are peculiar in some way.
For example, the agent’s past experiences may not give a reliable cross-
section of its environment vis-a-vis the schema 1*** ___ *_ Then the
strengths of the rules using that schema will be skewed in some way.
Human agents often operate under such misapprehensions. Neverthe-
less, the estimate does provide a guideline where we had none before.
And if it 1s wrong, subsequent estimates will tend to correct the error.
The procedure is much like the confirmation of a hypothesis through
continued experimentation.

If we greatly simplify the relations between schemata, we can think
of them as forming a kind of fantastic “landscape” Each schema is a
point in the landscape, and the corresponding schema average is the
height of the landscape at that point. Our objective is to find “hills” in
this landscape that are higher than ones already explored. Actually,
schemata as subsets of the space of possibilities form a complicated
lattice of inclusions and intersections, but the landscape metaphor is a
-useful starting point.

Stuart Kauffman and his colleagues have studied simple versions of
these landscapes—the n-k landscapes (see Kauffman, 1994). N-k land-
scapes have built-in statistical symmetries that make mathematical anal-
ysis possible. Analysis of these special cases, though it is not easy, does
reveal some interesting guidelines, which may be generalizable to the
more intricate relations that hold in the space of schemata—but that is
yet to be established.

Even if the landscape metaphor can be exploited, there is still a
problem. For each schema x of interest, we have to calculate the average
S(x) if we are to be able to estimate the value of that schema. Just how
many schemata are there? The number is very large, which helps by
providing many alternatives, but hinders by requiring the calculation of
many averages. To get some feeling for how large the number is, let’s
look at the different schemata that can be found in a single condition of
length L. Consider the condition
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10#10#% . .. 10#
| « L — |

If we replace some of the symbols in this string by *’, the result will be a
schema that is a building block for the condition. Examples of such
replacements are 1%%* ok 0F** Kk K(QXXQ*  *O* and
**  *x*103%. How many different ways can we insert *’s in the
given string? At each position we have two alternatives: we can either
retain the symbol that is already there or we can insert a *. So there are

2X2X...x2=2L
| « L — |

different schemata for a single condition. For L = 100, there are
2100 = 1()30

schemata. This is an enormous number. If we were to calculate one
million schema averages per second, it would still take longer than the
estimated life of the universe to do one round of averages for all of the
schemata for a single condition.

This leaves us with a considerable dilemma. It is not feasible to carry
out the detailed calculations of schema averages that would let us
conduct a detailed survey, and sophisticated analytic models provide
limited guidance even in simple cases. What can we do?

GENETIC ALGORITHMS

For evolutionary processes, where there is no apparatus for calculating
S-averages, the dilemma holds a fortiori. Yet the interaction of repro-
duction, crossover, and selection does discover and exploit building
blocks. To give one example, the Krebs cycle is a useful building block,
discovered early in evolutionary history, that has been used by a tre-
mendous range of species. It is a basic eight-step metabolic cycle
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common to almost all cells that use oxygen, ranging from aerobic
bacteria to humans. The genes that specify this cycle have almost
identical alleles over this diverse range of cells. The Krebs cycle is just
one example among many; any text on molecular biology will supply
hundreds of other examples. It seems worthwhile to try to understand
how evolution accomplishes this overwhelming computational task
with no overt computational facility.

We can get a fairly accurate picture of what happens, even if we
throw away most of the details. Simplify the whole reproduction cycle
to consider only the reproduction and recombination of “chromo-
somes.” Further simplify the process by representing the chromosomes
as strings. Then use only two genetic operations: crossing over and
mutation. Crossing over (crossover, for short) has already been described.
Mutation, more precisely point mutation, is a process whereby individual
alleles are randomly modified, yielding a different allele for the gene. In
the rule strings, mutation could randomly flip a 1 at some position to a
0 or a #. In biological systems crossover is much more frequent than
mutation, often as much as a million times more frequent.

To simulate the process of producing a new generation from the
current one, we use the following three steps:

1. Reproduction according to fitness. Select strings from the
current population (this might be the set of rules for the agent)
to act as parents. The more fit the string (the stronger the rule),
the more likely it is to be chosen as a parent. A given string of
high fitness may be a parent several times over.

2. Recombination. The parent strings are paired, crossed, and
mutated to produced offspring strings.

3. Replacement. The offspring strings replace randomly chosen
strings in the current population. This cycle is repeated over
and over to produce a succession of generations.

The key question is, what happens to building blocks (schemata)
under this procedure? A bit of arithmetic is helpful here. To make
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things easy, let the fitness of a string directly determine the number of
offspring it has in a given generation, and set the average fitness of the
overall population to 1, so that the average individual produces 1
offspring. (None of this limits the validity of the point I want to make; it
merely simplifies the calculations.)

Consider the building block 1** ... * and for purposes of calcu-
lation assume it has just three instances in the population, with fit-
nesses 1, 0, and 1 respectively (see Figure 2.10). Let’s see what happens
to this building block under step (1). The three instances of 1** ... *
will produce a total of 1+ 0+ 1=2 offspring, or an average
of % offspring per instance. Note that this average is simply the
average S(1** ... *). Because these are the only strings carrying the
building block 1** ... * that building block will have only two
instances in the new generation (assuming the parents persist for only
one generation). Because S(1** . .. *) = % is less than overall popu-
lation average A = 1, this reduction in the number of instances of
1*%* % is the outcome advocated by our earlier estimation pro-
cedure.

To see what changes when the numbers change, let’s look at a
second, more intricate building block in the same population. Consider
*(Q*H4**  * and assume it also has three instances, with fitnesses 2,
2, and 1 respectively (see Figure 2.10). The three instances will produce
a total of 2 + 2 + 1 = 5 offspring, or an average of %5 offspring per
instance. Again the outcome is just as the estimation procedure would
advocate: S(*0%3kdE**  *) = % is greater than A =1, so there
should indeed be more instances of *0*##** . * in the next gener-
ation.

We could repeat this calculation for each building block present in
the population, obtaining in each case the outcome advocated by the
estimation procedure: under reproduction according to fitness, above-
average building blocks are used more frequently, and below-average
are used less frequently.

For the mathematically inclined reader, this result can be given a
succinct form. For any schema b belonging to (1,0,3]L, let M(b,f) be the
number of instances of schema b in the population at generation ¢. Then
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M(b, t + 1) = S(b)M(b,1)

gives the number of instances in the next generation, at ¢ + 1, after
reproduction. Here S(b,¢) is the average strength of the instances of b at
time ¢, already defined.

This is precisely the result desired, so why complicate the procedure
by adding the crossover in step (2)? A moment’s thought makes the
reason obvious. The reproduction in step (1) simply copies strings
already present; it does not produce any new combinations. In other
words, step (1) does not produce any new hypotheses, so the agent
would be limited to the best of the hypotheses present in the initial
population. No matter how large the initial population, this can only be
a minuscule sample of the possibilities. In a complex, changing envi-
ronment, an agent using only step (1) is unlikely to fare well against
agents that can generate new hypotheses. That is where crossover
comes in.

EFrFECTS OF CROSSOVER

Crossover can recombine schemata without greatly disturbing the de-
sirable outcome of step (1). To see this, we have to take a more careful
look at exactly what happens when two real chromosomes cross. The
point at which they cross is not predetermined. In fact, the position at
which the two cross over is about as likely to be one position as another
(setting aside some skewing, caused by centromeres and other particular
pieces of chromosomal apparatus). For present purposes we can assume
that the point of crossover is chosen at random along the string.

What happens to a building block (schema) when the crossover in
step (2) follows the reproduction of step (1)? We’ll see that the effect
depends on the length of the schema. That length is the number of
possible crossover points between the outermost of the schema’s defin-
ing positions (recall that a defining position is any position without a *).
For example, in the string *0*44** % positions 2, 4, and 5 are the
defining positions, so the outermost defining positions are positions 2
and 5. There are three possible crossover points between these outer-
most positions, so the length of schema *0*dk3F** | * i 3.
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Shorter schemata are less likely to be disrupted by crossover, because
crossover cannot “break up” a schema unless it falls within the outer
limits of the schema (see Figure 2.11). Schemata not broken up will be
passed on to the next generation, as dictated by step (1). On a string of
length L there are L — 1 possible points of crossover (the points between
the genes). The chance of the crossover point falling within the outer
limits of a schema is the length of the schema divided by L — 1. So in
the example *O*34** _ * with L = 100, there are only 3 chances
out of 99 that crossover will disrupt the schema. That is, 96 times out of
99 the schema will be passed intact to the next generation. The
reasoning of step (1) holds.

In mathematical form, if L(b) is the length of schema b, then
L(b)/(L — 1) is the probability that crossover will fall within the outer
limits of b, and 1 — L(b) / (L — 1) is the chance that crossover will not
fall within the outer limits of b. If we assume that every crossover
falling within the outer limits actually disrupts the schema, then
1—L(b) /(L — 1) is the chance the schema will not be disrupted.
Accordingly, our earlier formulation, modified to take account of this
effect of crossover, becomes

M, t+ 1) = [1 — L) / (L — 1)]S(bt) M(b, 1),

where M(bt + 1) is the average or expected outcome because we are
now dealing with a chance process, crossover.

Longer schemata, of course, have a much larger chance of being
broken up; for a schema oflength 50, when L = 100, crossover will fall
within the outer limits more than half the time. There are two reasons
why this disruption of longer building blocks is not much of a problem.

First, the above-average shorter schemata are the ones discovered
early on. The reasoning is similar to that given for the early discovery of
less specific conditions in default hierarchies: A schema must have one
of the three letters {1,0,3} at each of its defining positions. Thus, if we
select a particular set of k defining positions, 3% variants are possible. For
k = 4, there are therefore 34 = 81 distinct schemata to be tested. Even
a rather small population can, in a short time, have produced a useful
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number of trials of all of these alternatives. Because the number of
defining positions for a schema is, at most, one more than its length,
short schemata have fewer variants. These variants will be tested rather
quickly, and if some are above average they will quickly be exploited,
like the early exploitation of general rules in a default hierarchy.
Before we continue, it will be useful to recall the earlier point that

Number of genes: 51
Number of points for crossing over: 50

Schema 1:
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ka1

Schema has 3 interior crossover points, so there are
3 chances in 50 that a randomly chosen crossover
point will fall in the schema’s interior.

Schema has 20 interior crossover points, so there are
20 chances in 50 that a randomly chosen crossover
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Figure 2.11 Eftects of Crossover on Schemata.
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there are approximately 1030 schemata present in a single string of
length L = 100. Even if we limit ourselves to schemata defined on 4
positions, the number of such schemata present on a single string is still
large. In fact, for L = 100 we can show that there are about 4,000,000
ways to choose different sets of 4 positions. (A simple calculation shows
the number of distinct ways of choosing 4 things from a set of 100).
Every single string contains each of these 4,000,000 distinct sets of 4
positions, so each string exhibits one of the 81 possible variants for each
of those sets. Because there are only 81 alternatives for each set, we can
still be assured that a rather small population will test all of the alterna-
tives at all positions. Specifically, a population of a few hundred strings
can produce useful estimates for all of the 81 X 4,000,000 schemata
defined on 4 positions. A slightly more complicated calculation shows
that even if these schemata are limited to a length of 10 or less, there are
still more than 40,000,000 of them. Nine times out of ten, such
schemata will be passed on to the next generation without disruption
by crossover. Similar reasoning holds, of course, for other small num-
bers of defining positions.

From this we see that, with the genetic algorithm, the agent tests
a very large number of schemata, even when we restrict our attention
to the shorter schemata that are largely undisturbed by crossover. This is
so even if the agent uses only a small number of rules (strings), because
one rule in itself is an instance of a large number of short schemata, as
we have just observed. It would be surprising if none of these
short schemata were consistently associated with above-average per-
formance.

The second reason that crossover’s disruption of longer schemata is
not so troubling stems from the observation that more complicated
schemata are typically formed from combinations of shorter, well-
established schemata. More complicated building blocks are usually
formed by combining simpler building blocks. This fact reflects our
earlier observation that innovations, such as the internal combustion
engine, tend to involve a particular combination of relatively simple,
widely used building blocks. Moreover, devices like the internal com-
bustion engine become, in turn, the centerpiece of a wide range of still
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more complex devices. The result is a kind of hierarchy wherein
the building blocks at one level are combined to form the building
blocks at the next level. Under a genetic algorithm a similar hierarchy
forms, wherein the higher-level (longer) schemata are typically com-
posed of well-tested, above-average shorter schemata. This hierarchy
ameliorates the disruptive effect of crossover, as we shall see very
shortly.

First of all, under a genetic algorithm, above-average schemata soon
come to occupy a large proportion of the population, because of above-
average replication in step (1). Consider, then, two parent strings that
contain identical copies of the same schema. Crossover cannot disrupt
the schema, even if crossing over takes place inside the schema’s outer
limits. The alleles exchanged will be replaced by identical alleles (see
Figure 2.11). It follows that crossover rarely disrupts longer schemata
composed of particular combinations of shorter, above-average sche-
mata. If some of these longer schemata are in turn above average, they
spread through the population. The hierarchy becomes more elaborate,
providing for the persistence of still longer schemata. A hierarchy of
disruption-resistant schemata emerges, similar to the way default hier-
archies emerge.

EFFECTS OF MUTATION

One question about step (2) remains. What is the role of mutation? To
find out, we have to look to step (3), replacement. It is possible for a
given schema, under reproductions, crossovers, and replacements
(“deaths”), to come to be present in every member of the population.
When this happens, all members of the population contain the same
alleles at the positions on which the schema is defined. Say, for example,
that the schema 1*** . | * is present in all members, so that all strings
in the population start with a 1. Then we have no strings that start with
either a 0 or a #. In the set of all possible strings, {1,0,%]L, only %5 start
with a 1. So, by losing just the two alleles 0 and ¥ at position 1, we are
reduced to trying out possibilities in only %3 of the space {1,0,3}H
Worse, once the alleles have been lost, the actions of reproduction and
crossover cannot replace them. Under these circumstances the allele is
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said to have gone to fixation. If k alleles have gone to fixation, we are
reduced to searching (V5)* of the space {1,0,3)L.

We might adopt the attitude that when an allele goes to fixation, the
genetic algorithm has established that allele’s superiority, so we need
not try the alternatives any further. Unless we are very sure of the allele’s
superiority, this is a poor way to proceed. Our attitude has been one of
sampling and estimation, because {1,0,%}L is so large as to make it
infeasible to try all combinations of alternatives. Estimates can be
wrong, even after considerable testing. No matter how many trials
underpin our estimate of the fitness of 1*** ... * we cannot be sure
that there is not a better string in the two-thirds of the space not being
searched. This concern is particularly pressing when the value of a
given building block (schema) depends on the context provided by
other building blocks. It might be that the fitness of 0*** _ | * is vastly
enhanced in the presence of *11*4** | * and that we have yet to
sample an instance of that combination. If the allele 1 at position 1 has
gone to fixation, the genetic algorithm will have no chance to observe
the combination of 0%** _ % and *11*$** * unless the 1 at
position 1 is driven away from fixation.

In mathematical form, if P, (b) is the probability that a mutation
will modify schema b, then 1—P,,,,(b) is the probability that mutation
will not modify b. Inserting this factor, as we did for crossover, we get

M(b, t + 1) = [1=LG)/ (L= )][1=P,,,0)]S(b.)M(b,).

This formula, then, gives the number of instances of schema b we
expect in the next generation after steps (1) and (2) of the genetic
algorithm have been applied. This formula is, essentially, the Schema
Theorem for genetic algorithms.

Mutation, by occasionally changing an allele to one of its alterna-
tives, reopens the search. From time to time a 1 in the first position
will be changed to a 0 or a #. In so doing, mutation provides the
replacement that reproducuon and crossover cannot. Calculations
show that this “insurance policy” can be invoked with a mutation
rate that is quite low compared to the crossover rate. This relation
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between mutation and crossover is in keeping with the fact that in
biological systems mutation rates are orders of magnitude lower than
Crossover rates.

COMBINED EFFECTS

We can now put together all three steps of the genetic algorithm to see
how they exploit above-average building blocks in producing a new
generation. Step (1), reproduction according to fitness, causes all sche-
mata to be treated according to the heuristic based on the estimation of
schema averages: above-average schemata have more instances in the
next generation, below-average schemata have fewer instances. In step
(2), crossover generates offspring that are different from their parents,
producing new combinations of the schemata passed on by step (1).
Crossover sustains the increased use of shorter, above-average schemata
but may disrupt longer schemata, particularly those not using shorter,
above-average schemata as building blocks. Schemata not tried before
may be generated by recombination of fragments when crossover dis-
rupts extant schemata. That is, crossover may generate new schemata
even as it recombines those already present. Mutation acts in step (2) to
provide an insurance policy against loss of alleles, and it can also
generate new schemata by altering the defining positions of extant
schemata. Finally, in step (3), the offspring replace strings already in the
population. This process introduces a “death rate” just sufficient to
keep the population at a constant size. These combined effects are
summarized in mathematical form by the Schema Theorem (in a form
closely related to the equation at the end of the previous section).
The most important feature of a genetic algorithm is its ability to
carry on this sophisticated manipulation of building blocks by acting
only on whole strings. We saw earlier that the number of building blocks
is so large that it is not feasible to calculate explicitly the estimates of
schema fitness that would guide increased or decreased usage of given
building blocks. The genetic algorithm does implicitly what is infeasible
explicitly. The whole-string operations (reproduction, crossover and
mutation) do not directly deal with schemata and carry out no computa-
tions involving them. Yet the algorithm acts as if such computations
were being made and exploited. Above-average schemata of one gener-
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ation are used more frequently in the next generation and below-average
schemata are used less frequently. This ability to manipulate large num-
bers of schemata implicitly through the explicit manipulation of a rela-
tively small number of strings is called implicit parallelism.

Viewing rule discovery in terms of building block manipulation and
implicit parallelism changes the outlook in another way. Consider a
biological population, say a human population. No individual in a
given generation is identical to any individual of the previous genera-
tion. Even the best individuals in a generation are never repeated in a
future generation. There will only, ever, be one Einstein. Here we have
a bit of a dilemma. If evolution “forgets” the best individuals in each
generation, what does it “remember”? Implicit parallelism supplies an
answer. Particular individuals do not recur, but their building blocks do.

This recurrence of building blocks is a familiar feature of artificial
breeding. Every thoroughbred breeder knows that certain desirable
features are associated with particular bloodlines. These are the building
blocks that are combined by selective crossbreeding. Though we will
never again see Man o’ War or Citation, their building blocks will
appear again and again.

Evolution “remembers” combinations of building blocks that in-
crease fitness. The building blocks that recur generation after genera-
tion are those that have survived in the contexts in which they have
been tested. These contexts are provided by (1) other building blocks
and (2) the environmental niche(s) the species inhabits. There is actu-
ally an extensive hierarchy that is continually tested at every level. At
the lowest level are particular, short DNA sequences that provide
standard tags. These help implement the DNA translation process, such
as the “start” and “stop” codes for translation of the DNA sequences
that make up the chromosome? alleles. At the next level are the alleles
themselves, and one level above that are combinations of alleles, the
coadapted alleles, that code for enzymes that work well together. The
Krebs cycle is an example of such a coadapted set, remembered over
hundreds of millions of years.

The building blocks that we observe are, by and large, the robust
building blocks. The Krebs cycle is so robust that it occurs throughout
whole kingdoms of organisms. Under this view, evolution continually
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generates and selects building blocks at all levels, selected combinations
of established building blocks at one level becoming the building blocks
of the next-higher level. Evolution continually innovates, but at each
level it conserves the elements that are recombined to yield the innova-
tions. When a new building block is discovered at some level, it usually
opens a whole range of possibilities because of the potential for new
combinations with other extant building blocks. Tremendous changes
and advances ensue. The genetic algorithm, applied to rule discovery,
mimics this process but with a much simpler syntax.

An Example: An Adaptive Agent
for the Prisoner’s Dilemma

The Prisoner’s Dilemma is a two-person game that captures major
political and personal interactions in a simple, well-defined context.
The interested reader can learn about the history and importance of this
game in Axelrod (1984). The game is of particular interest because the
solution given by the theory of games is to avoid cooperation (called
defection) whereas, in actual repeated play, players discover the benefits
of mutual cooperation. Let me describe the game in greater detail, then
show how adaptive agents learn to play.

In the Prisoner’s Dilemma, each player has just two options at each
play, known colloquially as “cooperate” (C) and “defect” (D). There
are, therefore, four possible outcomes to a given play of the game:
(C,C), both players elect to cooperate; (C,D), first player cooperates
and second player defects; (D,C), first player defects and second player
cooperates; and (D,D), both players defect. The payoff (relative value)
of these outcomes is given by the following table:

Second Player

C (cooperate) D (defect)

C (cooperate) +3, +3 0, +5
First Player
D (defect) +5, 0 +1, +1
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For instance, the outcome (D,C) is worth +5 to the first player and O to
the second, as given by the pair (+5, 0) in the table.

The minimax solution given by game theory minimizes the maxi-
mum damage the opponent can do. It is determined by comparing the
maximum damage under cooperation with the maximum damage un-
der defection. If the first player cooperates (C,-), the maximum damage
occurs when the second player makes the response D, yielding (C,D)
with a payoff of 0 to the first player. If the first player defects (D,-), then
the maximum damage again occurs when the second player makes the
response D, but now the payoff to the first player is +1. Thus, the first
player suffers minimum damage by always defecting. The same reason-
ing holds for the second player. Thus (D,D) is the minimax solution.

It is evident from the table that both players can do better. If they can
come to mutually cooperate (C,C), both can earn +3 on each play, a
much better outcome than the minimax solution. In actual repeated
play, players discover the benefits of mutual cooperation after trying out
various strategies, and the game typically settles down to long bouts of
cooperation. Experiment shows that a quite simple strategy, tit for tat,
induces cooperation while punishing defection. To understand this
strategy, we need to know more about the notion of a strategy for
playing the Prisoner’s Dilemma.

A strategy for repeated play of the game uses the recent history of
play to choose one of the two options for the next move. Here, we
simplify by setting a “horizon” so that each player can only remember
the past three outcomes. At time ¢, then, the history would be the
outcomes at t—3, t—2, and t—1, say (C,D), (C,D), and (D,D). With this
horizon there are 4 X 4 X 4 = 64 possible distinct histories ranging
from (C,C) (C,C) (C,C) to (D,D) (D,D) (D,D). They are listed in the
history column of the table below. A strategy must specify, for each
history, what move (C or D) the player should make.

The table presents a particular strategy, tit for tat. The reply of the
first player at time ¢ (“tit”) simply duplicates the action of the second
player the previous time, t—1 (“tat”). When a history ends in D,
therefore, the next action taken should be D, whereas if it ends in C, the
action taken should be C.
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We can assign each of the 64 histories an index. Assign index 1 to
history (C,C) (C,C) (C,C) and index 64 to history (D,D) (D,D) (D,D).
Thus (from the table), the strategy might say under history 1, (C,C)
(C,C) (C,C), cooperate (C); under history 2, defect (D); and so on
through history 64.

Index History Action
t-3 -2 t-1 t

1 (CO) ([CO((Ceo C

2 (C,C) (CC)(CD) D

3 (CO (CC Db C

4 (CO(CC)DODb) D

64 (O,)D) (D)D) (DD) D

Using the indexes for histories, a complete strategy can be represented
by a string with 64 positions. At the first position in the string we insert
the action to be taken under history 1, at the second position the action
to be taken under history 2, and so on.

Index (histories): 1234 cee 64
String (actions): CDCD e+ D

The tit-for-tat strategy, then, places a C at the odd-numbered positions
and a D at the even-numbered positions, yielding the string

CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD.

A quick calculation shows that even for a game as simple as the
Prisoner’s Dilemma with a three-step horizon, the number of possible
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strategies is overwhelming—264, which is approximately equal to 16
billion billion!

We can think of a player learning to play the repeated Prisoner’s
Dilemma by starting oft with a small set of sample strategies to be tested
against the opponent. We can also think of each strategy as a set of
stimulus-response rules, where the immediate past history is the stim-
ulus that determines which play is to be made in response. Adaptation,
then, involves (1) assignment of ratings to each of the strategies on the
basis of experience, and (2) invention of new strategies to replace those
that end up with low ratings. The rating of a strategy is merely the
average of the payoffs it receives when it is used against the opponent.
The genetic algorithm uses these ratings as fitnesses and generates new
strategies accordingly.

Repertoire of Strategies
(player A)

Average Payoff

CDDCCCCDCCDCDDDCDDCCDCD ... DCDCCDCCC  +0.5
DDDDDDDDDDDDDDDDDDDDDDD . . . DDDDDDDDD  —0.4
CCCCDDDDCCCCDDDDCCCCDDD ... DCCCCDDDD  +0.7

CCCCCCCCCCCcCreeeeceeccecce. .. ceceeeceecece —-0.2

It is an interesting sidelight that we can anticipate what schemata
(building blocks) will be used by the genetic algorithm, because we
know that tit for tat is a favorable strategy. C’s at even positions and D’s
at odd positions are components of a tit-for-tat strategy, so that combi-
nations of C’s and D’s satisfying this requirement should enhance
performance. For example, the combination CDCD placed so that the
C falls at an odd position would be a useful schema. According to the
schema theorem for genetic algorithms, such building blocks should
appear ever more frequently as new strategies (strings) are generated.

(against player B)
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Moreover, as building blocks at different positions become common,
crossover can combine them, providing offspring with still more build-
ing blocks.

Parent Strings Offspring Strings

Crossover

point

DD(ICDDDDDCC ...cccce pppebebpeccepepedp . . . cpbbe

CCDDDCDDDILACDCDCHD . .. CDDDC  CCDDDCDDDCCDDDDDCC . .. CCCCC

Robert Axelrod at the University of Michigan, with the help of
Stephanie Forrest, designed a simulated player that started with a small
set of randomly chosen strategies (see Axelrod, 1987). The simulated
player employed the genetic algorithm to search the large set of possible
strategies. The hope was that the genetic algorithm would find the tit-
for-tat strategy after a reasonable number of plays. In fact, the genetic
algorithm did more than that. After discovering tit for tat, it actually
generated a strategy better than tit for tat. This strategy exploited
players that could be “bluffed,” reverting to tit for tat when history
indicated the player could not be bluffed.

Adaptive Agents and Economics

That adaptive agents can learn strategies in a game like the Prisoner’s
Dilemma, combined with the close relationship between games and
economics, suggests an approach to economics based on adaptive
agents. Conversations with Brian Arthur at the Santa Fe Institute
induced me to pursue thoughts along these lines in a more than casual
way. Our ideas, encouraged by interplay at some seminal workshops at
the institute set in motion by Philip Anderson and Kenneth Arrow,
solidified into a project for simulating a stock market using adaptive
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agents. This project was to be a thought experiment, not an attempt at
prediction; it was aimed at getting a better feeling for the dynamics of
the market.

Though it might seem otherwise, market dynamics are not a natural
area of study for classical economics. From the classical point of view,
markets should always clear rapidly, moving in narrow ranges dictated
by changing supply and demand. Classical models do not readily gener-
ate crashes and speculative bubbles. It is easy to pinpoint the reason for
this lack. Classical theory is built around agents of perfect rationality—
agents that perfectly foresee the consequences of their actions, includ-
ing the reactions of other agents. Unusual dynamics, such as crashes and
speculative bubbles, are usually attributed to incidentals, such as noisy
degradation of information.

Still, real markets typically fluctuate much more rapidly, and over
much wider ranges, than the supply and demand fluctuations that
supposedly drive them. Both Arthur and I felt that a market based on
adaptive agents, agents of bounded rationality rather than agents of
perfect rationality, was much more likely to exhibit “natural” dynamics.
In particular, we felt that the anticipatory speculations produced by the
internal models of such agents would generate speculative bubbles and
subsequent crashes. In other words, we felt that learning, and the
imperfect internal models it produces, would automatically generate
realistic dynamics without the introduction of exogenous variables.
With a computer-based model, we could see just how far the mecha-
nisms of the adaptive agent syntax would take us.

We proceeded to implement this approach, recruiting others, such
as the physicist Richard Palmer, as we went along. In our model a
small number of adaptive agents trade in a single stock, with a (non-
adaptive) specialist program adjudicating buy and sell offers to deter-
mine a current price (the equivalent of a daily average). To produce
the “anonymity” of the stock market, and to keep things simple, an
agent’s only input information on each time-step is this current price.
On the basis of this information, perhaps collected in a “history” (as
in the Prisoner’s Dilemma), the agent decides on one of three actions
at each time-step: BUY, SELL, or HOLD. There is a “dividend” on
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shares held, so that an agent makes money by simply holding. (This
dividend, which does not fluctuate in the simplest models, determines
a “fundamental value” for the stock.) The measure of performance of
any given agent is the amount of money it accumulates through its
actions.

The details of this implementation do not add much to the descrip-
tion just given, and the earlier example of the Prisoner’s Dilemma gives
some idea of what is involved. So I'll go directly to results. In a typical
run, the agents are started with randomized initial strategies. As might
be expected, the initial market is pretty disorderly. But credit assign-
ment and the genetic algorithm soon provide each individual agent
with experience-based rules for buying, selling, and holding. An agent
might develop rules of this form: IF (the price is 40) THEN (sell), and
IF (the price is below 40) THEN (buy). The market soon smooths out
and begins to look like a market involving the agents of classical
economics. Then one of the agents finds a rule that exploits the
market’s “inertia,” making money by selling a bit “late” in a rising
market. Other agents begin to anticipate trends, and the whole learning
process yields a market which makes these trend projections self-
fulfilling—for a while. Over time, after enough self-fulling prophecies,
the behavior becomes more and more exaggerated, leading to a bubble
and eventually a crash. The whole process seems quite natural, and not
the least surprising, in this framework. When we “dissect” the agents,
we even find sets of rules that mimic, in this simple setup, well-known
market strategies such as “chartism.”

Ours is not the only computer-based model using adaptive agents to
emerge from the Santa Fe Institute workshops in economics. Another
model, every bit as interesting as the stock market model, was designed
by Ramon Marimon and Thomas Sargent (see Marimon, McGratten,
and Sargent, 1990). This model is built on Wicksell’s Triangle, a classic
model in economics. Wicksell’s Triangle consists of three “countries,”
each of which produces a single product. A problem arises because the
product a country produces is not the product it wants to consume; the
product it desires is produced by one of the other countries. What is an
efficient trading pattern for these countries? Among other things,
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Wicksell’s Triangle concerns the emergence of “money,” the use of one
of the products as a medium of exchange.

The scope for action of each of the countries in Wicksell’s Triangle is
so simple that it seems readymade for a computer-based simulation
based on adaptive agents. The triangle has been much studied by
economists, so that various mathematical approaches are available for
comparison. The simulation, starting with randomly endowed agents,
did exhibit the emergence of one product as a medium of exchange
under a wide variety of conditions. In the simulation the conditions for
emergence were examined in some detail, providing guidelines for
determining which of the products would serve as a basis for other
exchanges.

These early efforts at using adaptive agents to study bounded ratio-
nality, and the ensuing dynamics of economies so described, seem to
me suggestive and hopeful. Because such systems do not settle down, or
even stay at a quasi-equilibrium for long, they provide a window on
aspects of economics not often available for rigorous study. An econo-
mist may ask, “What can we study in a system that exhibits perpetual
novelty?” But the situation is not so different from that faced by a
meteorologist. On all time and distance scales, the weather goes
through never-repeating changes. While we cannot predict weather in
detail over more than a few days, we understand the relevant phenom-
ena well enough to make many useful adjustments, both short term and
long term. For our adaptive-agent-based studies of economies, we must
find the counterpart of fronts and jet streams (tagged aggregates, mind
you) if we are to make progress. Then we may be able to uncover some
of the critical lever points.

Recapitulation

We can now step back to see just what we’ve given up and what
we’ve retained in this framework for representing adaptive agents. The
framework, as intended, consists of three major components: (1) a
performance system, (2) a credit-assignment algorithm, and (3) a rule-
discovery algorithm.
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(1) The performance system specifies the agent’s capabilities at a
fixed point in time—what it could do in the absence of any further
adaptation. The three basic elements of the performance system are a
set of detectors, a set of IF/THEN rules, and a set of effectors. The
detectors represent the agent’s capabilities for extracting information
from its environment, the IF/THEN rules represent its capabilities for
processing that information, and the effectors represent its ability to act
on its environment. For all three elements the abstraction loses the
details of the mechanisms employed by the different kinds of agents.

A closer look at the concept of detectors gives us a better idea of what
has been lost and what has been gained. An antibody employs detectors
that depend on local arrays of chemical bonds, while an organism’s
detectors are best described in terms of its senses, and a business firm’s
detectors are usefully described in terms of the responsibilities of its
various departments. In each instance there are interesting questions
about the particular mechanisms for extracting information from the
environment, but we have put these questions aside here. Our frame-
work concentrates on the information produced—the properties of the
environment to which the agent is sensitive. We exploit the fact that
any such information can be represented as a binary string, here called a
message. We gain the ability to describe, in a uniform way, any agent’s
ability to extract information from its environment. Defining the per-
formance system’s ability to affect the environment in terms of
message-sensitive effectors entails similar losses and gains.

The same considerations hold for the agent’s ability to process infor-
mation internally. The mechanisms are various, but we have concen-
trated on the information-processing aspect. By conjoining IF/THEN
rules with messages, we wind up with rules of the form IF (there is a
message of type ¢ on the message list) THEN (post message m on the
list). In so doing, we lose the details of the mechanisms used by partic-
ular agents for processing information. For example, if we are studying
the progression in which genes are turned on and off in a develop-
ing embryo, we lose all the fascinating details about the particular
mechanisms of repression and derepression. We retain, however,
a description of the stages of development, and the information fed
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back at each stage. In general, we gain the ability to describe any
information-processing capability that can be modeled on a computer.
Because many rules can be active simultaneously, we gain a natural way
for describing the distributed activity of complex adaptive systems. In
particular, systems with this parallelism automatically describe novel
situations in terms of familiar components; internal models, in the form
of default hierarchies, form naturally. Both activities are pervasive in cas.

Once we settle on a rule-based description of performance, the
process of adaptation provides components (2) and (3) of the frame-
work.

(2) The essence of credit assignment is to provide the system with
hypotheses that anticipate future consequences—strengthening rules
that set the stage for later, overtly rewarding activities. For cas this
process leads to a question we have not really explored so far. Just what
is it that should be considered rewarding? We’ll look at this question in
some depth in the next chapter, but let me touch on it here.

In mathematical studies of genetics, economics, and psychology this
question is often settled by fiat, assigning numerical values to the
objects of interest. Fitness is directly assigned to chromosomes, utility is
directly assigned to goods, and reward is directly assigned to behaviors.
But the question is more subtle. Consider the behavior of an organism.
Generally, evolution has built in certain internal detectors that record
the status of “reservoirs” of food, water, sex, and the like. The organ-
ism’s behavior is largely directed at keeping these detectors away from
“empty.” For more sophisticated organisms, much stage setting and
anticipation goes into this task. It is a kind of never-ending game with
intermittent payoffs. The value of any behavior depends on the current
position in the game and the status of the reservoirs. Said another way,
figures of merit for cas are usually implicitly defined. Competition, with
local payments, is one of the few techniques we have for handling such
problems in distributed systems. We’ll soon see how pervasive such
competition is in cas; for now we simply note that competition is the
basis of the credit-assignment technique used to describe this aspect of
adaptive agents.

(3) Rule discovery, the generation of plausible hypotheses, centers
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on the use of tested building blocks. Past experience is directly incorpo-
rated, yet innovation has broad latitude. This particular method of
recombining building blocks draws heavily on genetics, but it can be
considered as an abstract version of a pervasive process. We can even
describe neurophysiological theories of thought in terms of building
blocks. Take Hebb’s (1949) classic, still influential treatise. In Hebb’s
theory a cell assembly is a set of a few thousand interconnected neurons
capable of self-sustained reverberation. A cell assembly operates some-
what like a small cluster of rules that is coupled via common tags. Cell
assemblies act in parallel, broadcasting their messages (pulses) widely via
a large number of synapses (interneuron contacts—a single neuron may
have as many as ten thousand synapses). Cell assemblies compete for
neurons via recruitment (adding parts of other cell assemblies) and
fractionation (dividing into fragments that serve as offspring). It is not
difficult to see this as a process that recombines tested building blocks.
Moreover, cell assemblies can be integrated into larger structures called
phase sequences. Indeed, it is not difficult, on rereading Hebb, to see
counterparts of all the processes we have discussed.

Because tags play such an important role in coupling rules and
providing sequential activity, it is important to note that they too have
building blocks. Tags are really schemata that appear in both the condi-
tion and action parts of rules. As such, they are subject to the same
manipulations as any other part of a rule. Established tags—those found
in strong rules—spawn related tags, providing new couplings, new
clusters, and new interactions. Tags tend to enrich internal models by
adding flesh (associations) to the skeleton provided by default hier-
archies.

Onward

With these definitions and procedures in place we have a uniform way
of depicting the daunting array of adaptive agents that appear in cas. The
availability of a uniform description for adaptive agents gives hope that
we can indeed portray all cas within a common framework. Cross-
comparisons of different cas then take on added meaning because they
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can be made in a common language. We can translate mechanisms that
are salient and obvious in one cas to other cas where the mechanisms
may be obscure, though important. Metaphors and other guides in the
search for general principles become enriched. The search becomes
more directed, and more hopeful.

To see where this may lead, look again at New York City. Interesting
comparisons are possible even when the systems are at opposite ends of
the cas continuum. Consider an embryo as the metaphorical counter-
part of the city. If we look to the origins of New York four centuries
ago and make appropriate changes in timescale, the growth of the city
does show some similarity to the growth of an embryo. Both start from
a relatively simple seed. Both grow and change. Both develop internal
boundaries and substructures, with a progressively more complicated
infrastructure for communication and transport of resources. Both
adapt to internal and external changes, retaining coherence while
holding critical functions in narrow ranges. And, underpinning all,
both consist of large numbers of adaptive agents—1In one case, various
kinds of firms and individuals, and in the other, a variety of biological
cells.

Can we make these similarities into something more than an inter-
esting anecdote? Are there lever points of embryonic development (and
we know quite a few from work in morphogenesis, for example; see
Buss, 1987) that are suggestive in altering urban development? Later
we’ll see that crises offer unusual opportunities for changing urban
habits. Are the experimental crises we induce in embryos suggestive in
this respect? Can we make comparisons in “anatomy” that will be
helpful in the way that Darwin’s anatomical comparisons enabled him
to advance the theory of natural selection?

To make progress on this and similar questions, we need to use our
common representation for adaptive agents in a broader setting. We
have to provide an environment that allows our genetic agents to
interact and aggregate. That is the subject of the next chapter.
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WE CAN NOW DESCRIBE the actions and interactions of an
adaptive agent in some detail, and we can do so in a common format,
whatever the agent’s outward form. With our new understanding of the
process of adaptation as background, it’s time to look at complex
adaptive systems as a whole. Here we confront directly the issues, and
the questions, that distinguish cas from other kinds of systems. One of
the most obvious of these distinctions is the diversity of the agents that
form cas. Is this diversity the product of similar mechanisms in different
cas? Another distinction is more subtle, though equally pervasive and
important. The interactions of agents in cas are governed by anticipa-
tions engendered by learning and long-term adaptation. In specific cas,
some anticipations are held in common by most agents, while others
vary from agent to agent. Are there useful aggregate descriptions of
these anticipations? The combination of diversity and anticipation
accounts for much of the complexity of cas behavior. Both seem to arise
from similar mechanisms for adaptation and evolution. Is there a way
to weld these mechanisms into a rigorous framework that encompasses
all cas?

It is only through a unifying model that we can develop a deeper
understanding of such critical phenomena as the lever-point phenome-
non. We know specific examples of this phenomenon: the vaccines that

93
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act as levers on the immune system, the enzymes that direct and redirect
activities in the cell, the sudden fright that permanently changes the
central nervous system, the introduction of an organism (say a rabbit)
into an ecosystem where it has no natural enemies (Australia), and so
on. There even seem to be similarities among these examples. But we’re
far from characterizing the conditions in cas that make leverage possible.
If we look to a different cas, the search begins anew, with no help from
previous instances. The examples just given tell us little about the kinds
of economic conditions that encourage the tremendous growth and
financial leverage of a Microsoft Corporation. We need guidelines that
go beyond specific cas, and we're likely to find them only when we
understand the general principles that underpin cas. That understand-
ing, in turn, is likely to arise only with the help of computer-based
models that extract the essence of cas.

The attempt to provide a framework and theory that applies to all cas
depends, as is usual in the sciences, on two activities: (1) the provision of
an organized set of data, and (2) the use of induction, aided by mathe-
matics, to find laws that can generate those data. This is a familiar
process, often described in textbooks, but it helps to have a canonical
example. One of my favorites comes from the early days of science.
Tycho Brahe, as part of his extensive efforts in the sixteenth century,
kept a careful record of the nightly positions of the planets, which over
the course of months move through the skies in a kind of S-shaped
curve. Later, after an extended search, Kepler produced the insight that
ellipses, with the sun at one focus, can generate those data. (The
interaction between Brahe and Kepler, and the scientific results, are
nicely described in Lodge, 1950.) When this classic process is translated
to the study of cas, we’ll see that it takes some unusual twists.

The present chapter uses a series of increasingly complex models to
illustrate the process of selection and rejection that goes into organizing
complex data. I worked on an early precursor of these models in 1975
(Holland, 1976), and some of the ideas were honed in a seminar
organized by Doyne Farmer and Chris Langton during my year on “the
Hill” (Los Alamos National Laboratory) as Ulam Scholar. However,
the spark that directly ignited the work was a request from Murray
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Gell-Mann: he asked if I could produce a simple, highly visual model
that would illustrate the creation of complex structures by natural
selection. It is difficult to say no to Murray, and he is persistent. I began
to think of ways to satisfy his request while furthering my own research
objectives. The Echo model is the result, though I fear it does not yet
meet Murray’s needs.

Echo relies on the basic mechanisms and properties enumerated in
Chapter 1 to provide a framework for examining cas. By turning this
framework into a computer-based model (the subject of the next
chapter), we attain a fully rigorous presentation. The computer-based
version can be “run,” so that we can observe the actions of its mecha-
nisms and the resulting behavior. (It is rather as if Brahe and Kepler had
a mechanized orrery for generating the positions of the planets.) Be-
cause cas are so intricate, computer-based models, with their well-
defined, manipulatable mechanisms, provide a crucial intermediate step
in the search for cas laws. Such models, where they mimic relevant cas
phenomena, put cas data in a rigorous format, thereby facilitating the
description of patterns and laws.

Otrganizing Cas Data

Organizing data can sometimes be simple. Brahe merely recorded time
and position for each planet. It becomes difficult when there are many
things that could be recorded. The modern experimental physicist
thinks long and hard about what instruments or gauges to use and
under what conditions. And these thoughts are guided by what theory
suggests should happen, or by holes in current theory. If the experi-
menter is inspired, the result is a critical experiment, where some assumed
law or mechanism is shown to be adequate, or inadequate, to generate
selected data. In setting up the experiment, the researcher decides what
is to be included and what is to be excluded, as well as what is to be held
constant (if he or she has that much control). The experimenter does
much to organize the data merely by organizing the conditions of the
experiment.

Cas present substantial problems when it comes to extracting and
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organizing data. As with astronomy, the experimenter cannot stop the
system in order to run it again under different conditions. He or she
may even be constrained in the ways the system can be probed. An
economist may be reasonably sure that high interest rates discourage
long-horizon investments, but it is not an experiment that will be tried
under controlled conditions, even if the economist has the power to
carry it off. All too often cas seem to adhere to a version of the “Third
Harvard Law of Biology”: with a careful research plan, under con-
trolled conditions, using selected agents, complex adaptive systems do
pretty much as they damn please.

At the start of this book, I emphasized that, in building models, we
must distill pervasive characteristics from idiosyncratic features. This
point holds a fortiori when we are trying to develop models that are
relevant for all cas. It is a more than usually difficult task for cas, because
these idiosyncratic features are often a fascinating and diverting subject
in themselves. However, our hope for a general understanding depends
on setting them aside. We need the distillate—simpler models that
supply guidelines for the study of all cas.

Computer-based models help because they can be started, stopped,
and manipulated to one’s heart’s content. This very flexibility is a source
of difficulty, though. A computer-based model is already an abstraction
from data, even when it is designed to carefully mimic a specific system.
Of course, this is also more or less true of a carefully designed physical
experiment—such an experiment does deal directly with physical
objects, but many influential factors have been deliberately damped
down or excluded. The computer-based model goes farther down this
path. At no point is it automatically constrained by physical reality. The
experimenter can impose any computable laws, and they can be as
fanciful as desired or accidentally permitted. Caution and insight are the
watchwords if the computer-based model is to be helpful.

Even a model designed for thought experiments must still attend to
data or laws derived from data. The designer must still carefully select
the setting, as with a physical experiment. But there is the added
constraint that the setting must be physically plausible, a condition
automatically met in the physical experiment. A model does organize
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data, and in this it is like the table Brahe used for that purpose; but a
computer-based model does more. When the model is run, it rig-
orously unfolds the consequences of its design (Brahe’s tables become
active!). This activity turns the computer-based model into a halfway
house between experiment and theory. Looking back to data, we can
see if the consequences are plausible; looking forward to theory, we can
see if general principles are suggested.

Discovering lever points and other critical cas phenomena is partic-
ularly difficult because contexts and activities are continually changing
as the agents adapt. It is rare that we can even determine the utility of a
given activity. The utility of the various activities of a given agent
depends too much on the changing context provided by other agents.
In mimicry, symbiosis, and other properties, the welfare of one agent
depends critically on the presence of other, different agents. Fitness
(reward, payoff) is implicitly defined in such cases. We cannot assign a
fixed fitness to a chromosome because that fitness, however defined, is
context dependent and changing. So it is for all cas. Our first order of
business, then, is to provide a class of models in which the welfare of an
adaptive agent stems from its interactions rather than from some prede-
termined fitness function.

We are entering new territory. Few models exist that exhibit this
implicit approach to fitness, even in quite simple situations. There
is more of a mystery to the origin of the pin factory that Adam
Smith (1776) discusses in his Wealth of Nations than is generally
realized. This factory was one of the first examples of a production
line; one craftsman drew the wire, another clipped it to size, another
sharpened the point, and so on. The result was a tenfold increase in
production over the efforts of the same number of craftsmen working
individually. Smith and later commentators discuss relevant factors:
specialization, more efficient learning, mass purchasing, and so on.
But we do not have any models that demonstrate the transition that
enables individual skilled craftsmen to organize into a factory. What
actions and interactions between these individual agents produced an
organized aggregate that persisted? What were the adaptive mecha-
nisms that favored the emergence of this aggregate? It makes little
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sense, and it helps our understanding not at all, to assign a high
a priori fitness to the pin factory. That fitness must emerge from
the context.

The Criteria for Echo

At this point, we need a concrete example of the kind of model I've
been describing. To that end, I'll devote the rest of this chapter to the
formulation of such a model, really a class of models, called Echo. By
illustrating both the possibility and the possibilities of a unifying model,
Echo gives us a way of rephrasing the questions we’ve encountered so
that they apply to all cas. Echo has been formulated with several criteria
in mind:

(1) Echo should be as simple as possible, consistent with the other
criteria. It is meant for thought experiments rather than for emulation
of real systems. (Despite the simplicity, it can actually be used to model
some real experiments, a case in point being Brown, 1994—data about
the ongoing changes in an ecosystem in Arizona when a major preda-
tor, the kangaroo rat, is excluded from the system.) This simplicity is
attained, in part, by substantially restricting the latitude of the adaptive
agents in Echo. Interactions are carefully constrained, and the agents
have only primitive internal models.

(2) Echo should be designed so that the actions of its agents are
interpretable in a wide range of cas settings. In particular, the model
should provide for the study of interactions of agents that are distributed
in space (a “geography”) and are mobile. It should be possible to assign
different inputs (stimuli and resources) to different sites in the space
when desired.

(3) Echo should facilitate experiments on the evolution of fitness. To
this end, fitness in Echo should not be fixed at the outset as something
outside the system (an exogenous factor). Rather, fitness should de-
pend on the context provided by the site and other agents at that site
(endogenous factors). The fitness of an agent should change as the
system evolves.

(4) The primitive mechanisms in Echo should have ready counter-
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parts in all cas. Two advantages follow. Interpretations of the results are
constrained to be consistent with the ready-made interpretations of the
mechanisms. Simulations, after all, are simply manipulations of num-
bers and symbols. It is all too easy to label output in facile, even fanciful,
ways, thereby giving an “eye-of-the-beholder” distortion to the inter-
pretation. The grounding provided by the interpretations of the primi-
tive mechanisms counters this tendency by constraining the labeling. A
second advantage accrues because, with the help of the interpretations,
selected mechanisms can be shown to be sufficient to generate the
phenomena of interest. In evolutionary biology, for example, there has
been an extended discussion about the sufficiency of standard Darwin-
ian mechanisms as a means of generating the saltations that appear in the
paleontological record (see Gould, 1994). While simulations cannot
establish that a given mechanism is actually present—only observation
can do that—they can establish the sufficiency or plausibility of the
mechanism.

(5) The Echo models should be designed to incorporate well-known
models of particular cas wherever possible. This is a version of the
Correspondence Principle that Niels Bohr applied so effectively to the
development of quantum physics (see Pais, 1991). There are well-
studied mathematical models that apply to all cas when suitably trans-
lated: biological arms races (Figure 1.12 and Dawkins, 1976) and
survival of mimics (Brower, 1988) in ecology; Wicksell’s Triangle
(Marimon, McGratten, and Sargent, 1990), and Overlapping Genera-
tion models (Boldrin, 1988) in economics; the Prisoner’s Dilemma
game (Axelrod, 1984) in political science; Two-Armed Bandits (Hol-
land, 1992) in operations research; and antigen-antibody matching in
immunology (Perelson, 1994). If we can incorporate these translations
in the Echo framework as special cases, we gain several advantages. We
make bridges to paradigmatic models that have undergone intense
scrutiny in the disciplines in which they originated—they have already
been adjudged to be useful abstractions of critical problems. When
Echo incorporates these abstractions as special cases, it benefits from the
thought and selection that went into them. As another benefit, Echo
becomes more accessible, and more open to critical inspection, in the
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originating disciplines. Also, as with the interpreted primitive mecha-
nisms, these abstractions ground Echo more firmly, constraining eye-
of-the-beholder interpretations.

(6) As many aspects of Echo as possible should be amenable to
mathematical analysis, the surest route for arriving at valid generaliza-
tions from specific simulations. The Bohr-like correspondences should
supply mathematical landmarks that we can link into a more complete
map, under the guidance of simulations.

In developing a version of Echo that meets these six criteria, I’ve
taken a step-by-step approach rather than try to go directly to a single
overarching model. Each step adds one additional mechanism, or
modification, then describes what is gained thereby. Even the first
model in the progression meets all the criteria to some degree. It
places particular emphasis on avoiding an overt fitness criterion:
agents live or die in terms of their ability to collect critical resources.
As further mechanisms are added, the means for collecting critical
resources expand. Counterparts of predation, trade, scavenging, spe-
cialization, and so on all can arise and evolve significantly as the agents
evolve. Any combination of the primitive mechanisms that provides
adequate amounts of resources for the agent, however bizarre, is
passed on and becomes a building block for future generations. The
last model in the sequence looks to the changing fitness of agents
having increasingly diverse organizations, including structures that
develop from seedlike founders.

Only the first model in this sequence has undergone extensive
testing, though relevant parts of the others have been simulated. It will
be easier to discuss what has been left out, and what remains to be done,
after I have described the models. The last section of this chapter
provides a scenario of the interactions that the most sophisticated
modelis designed to exhibit. As various levels are tested, we should gain
useful guidelines for investigating real cas, even if only a few of the
anticipated interactions show up. In this the models have a role similar
to mathematical theory, shearing away detail and illuminating crucial
features in a rigorous context. They differ from mathematics in that
they do not rigorously establish generalizations.
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The Organization of Echo
RESOURCES AND SITES

Echo’s foundation is laid by specifying a set of “renewable” resources,
which are treated quite abstractly. They can be represented by letters so
that, for example, we might have four resources symbolized by the
letters {a,b,c,d}. Everything in Echo is constructed by combining these
resources into strings. The resources are treated much like atoms, being
combined into “molecular” strings. However, no sophisticated bond-
ing properties are associated with the resources; all strings are admis-
sible. Thus, with {a,b,c,d} as resources, any string based on these four
resources, such as ab, or aaa, or abcdabed, would be an admissible
structure in Echo. We’ll see shortly how agents are constructed from
these strings.

Echo’s “geography” is specified by a set of interconnected sifes (see
Figure 3.1). The neighborhood relation between sites—the pattern of
juxtapositions—can be quite arbitrary and irregular, as if one were
looking at neighboring peaks in a mountain chain. Each site is charac-
terized by a resource fountain, an upwelling of the basic resources at
that site. If we think of time as divided into discrete steps, as in a digital
clock, then the fountain specifies the amount of each resource that
appears at that site on each time-step. The amount varies from site to
site and may range from 0 upward. One site may have no input of any
resource, a “desert,” while another may specialize in a high input of
resource b, a “water spring,” and still another may have a moderate
input of all resources, a “pond.” Agents interact at sites and a site can
hold many agents.

MODEL 1: OFFENSE, DEFENSE, AND A RESERVOIR

In model 1, an agent has only two components: a reservoir for containing
resources it has collected, and a single “chromosome” string, constructed
of resource letters, that specifies its capabilities (see Figure 3.2). Let me
empbhasize that this so-called chromosome has only a few of the charac-
teristics of a real chromosome. The terminology is suggestive, and there
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are similarities (more in later models than here), but real chromosomes
stand in a much more complex relation to an organism’s overall struc-
ture. Two critical characteristics are retained: (1) the chromosome is the
agent’s genetic material, and (2) the chromosome determines the
agent’s capabilities. In particular, in this model, an agent’s ability to
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Figure 3.1  Echo Overview.
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interact with other agents depends on tags specified by segments of the
chromosome string. The mode of interaction is reminiscent of the way
antibodies and antigens interact, although it can encompass a broad
range of interactions of other real agents.

The crux of the Echo models is the requirement that an agent can
reproduce only when it has acquired enough resources to make a copy
of its chromosome string. The agent’s fitness, its ability to produce
offspring, is thus implicit in its ability to collect resources. Again, there
are differences from real organisms. Here the chromosome stands in for
all of the agents structure, both cytoplasmic and nuclear. This represen-
tation buys a considerable simplification in the definition of structure
and fitness. An agent can acquire resources either from the site it
occupies or through interaction with other agents at the site.

In this first, simple model, each agent has a chromosome that does
nothing other than specify two tags, an offense tag and a defense tag. All
interactions in the model are mediated by these tags. When two agents
encounter each other at a site, the offense tag of one agent is matched

Intake

(resources from site
and interactions)

c

b
ad

b

OffemeTig] ]

Reservoir

Reproduction

(when reservoir contains
enough resources to make
copies of tags)

Figure 3.2 An Agent in Echo.
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against the defense tag of the other agent, and vice versa. The object is
to use the closeness of the matches to determine how resources are
exchanged between the agents (see Figure 3.3). For example, if the
offense tag of one agent is well matched to the defense tag of the other,
it will acquire most of the other agent’s resources, perhaps even re-
sources tied up in its chromosome (thereby “killing” it). On the other
hand, if the offense tag is poorly matched to the other’s defense tag, the
agent will receive only some surplus from the other’s reservoir, or
perhaps nothing at all.

To determine how well the offense string of one agent matches the

AGENT (D AGENT @

mismatch
mm:h-r] l extra
I . r[extn letter{s)
ffense: (1N c ¢ ¢ (2 X1 ccec in defense string]
ccbe
Defense: @cccbd  (Dad
Match 24242-1 2-1 match mismatch extra
Score: = =E| Locus 2 1
Scorxe

¥

Amount
OUTCOME: UNEQUAL TRADE Transferred
100% structure -3
@ transfers most of the content
of its reservoir o (1) oo
(1) transfers some of its surplus 100% surplus

w @

Note that a high match score causes resources (letters) to be transferred
from the structure (tags) of the defendant, causing its demise.

Figure 3.3 Resource Exchange.
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defense string of the other, the tag strings are first lined up so that their
left ends are coincident. Then, a match score is determined by going
down the strings position by position. At each position a value is
assigned from a table that gives a value for each possible pair of letters
(see the Locus Score line in Figure 3.3). For example, a b matched
against a b might add 2 points, while a b matched against a d might
subtract 2 points. If one tag is longer than the other, then each position
without a paired letter counts for a fixed number of points (positive or
negative). The overall match score is simply the sum obtained by adding
these points.

In this model the possibilities for a given agent depend entirely on
the pair of tags it carries. We can even extend this construct to interac-
tions with the site itself, by assigning defense tags to the site. The agent
acquires resources in proportion to the ability ofits offense tag to match
defense tags in other agents or sites. It avoids losses of resources in
proportion to the ability of its defense tag to avoid matches with offense
tags of other agents.

At first glance, it might seem that this version could be further
simplified by allowing only one tag per agent. However, a bit more
consideration shows that we would lose a vital property of cas interac-
tions thereby. A single tag for each agent would force transitivity of
interactions: if agent A can “eat” agent B and agent B can eat agent C,
then with a single tag it would follow, under transitivity, that agent A
can eat agent C. Cas interactions do not usually satisfy this property. Ina
real ecosystem hawks eat rabbits and rabbits eat grass, but hawks do not
eat grass. The use of two tags allows us to avoid this constraint (see
Figure 3.3).

Even this simple version of Echo offers interesting relationships
between agents, once we set aside transitivity. For example, there is an
interesting triangular relation, described by Holldobler and Wilson
(1990) in their monumental work, The Ants, that can be imitated in
Echo (see Figure 3.4). One corner of the interaction triangle is occu-
pied by a caterpillar that exudes a kind of nectar on its skin. Another
corner is occupied by a fly that lays its eggs on the caterpillar, thereby
becoming a predator through its larva. The third corner is occupied by
a species of ant that is a ferocious predator on the fly. The ant is attracted
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to and consumes the caterpillar’s nectar, but it is not a predator on the

caterpillar. When the caterpillar is surrounded by ants it, of course,

In effect, the caterpillar trades

some of its resources for protection. This triangle is a stable relationship

suffers much less predation by the fly.

that changes drastically if one of the elements is removed.

"CATERPILLAR"

o 8

Figure 3.4 Echo Simulation of the Caterpillar-Ant-Fly Triangle.
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This triangle provides an interesting test of Echo in several ways.
First, there is an “existence” question: can we design tags for three
different kinds of agents that allow trading between two of the agents,
while retaining the predation relations among the three? The answer is
yes (see Figure 3.4). Second, can we set Echo running with populations
of these agents, and observe a persistent triangular relationship? The
answer again is yes, though there are sometimes surprising develop-
ments over long periods of time. It is even possible for the top predator,
the ant, to die out, leaving an oscillatory predator-prey relationship
between the fly and the caterpillar—a relationship of the kind de-
scribed by the Lotka-Volterra equations (Lotka, 1956). Finally, can we
observe the evolution of such a triangle from a simpler starting point?
At this point we don’t know. The experiment has not yet been tried.

Extending the Basic Model

Although we can learn more from the basic model, that model is only a
step toward modeling the complexities of a full-fledged cas. In particu-
lar, the basic model does not provide enough apparatus for a broad
study of the way in which complex hierarchical structures emerge. Yet
hierarchical structures are a pervasive feature of all cas. This section
describes extensions that broaden Echo to the point where such phe-
nomena can be examined.

In trying to model phenomena as broadly described as “complex
hierarchical structures,” we need to have one or more well-described
examples in mind. The example that has guided much of my own work
in this area is the embryogenesis of metazoans—the process whereby a
fertilized egg progressively divides until it yields a mature many-celled
organism that reproduces by producing another fertilized egg. The
structure of a mature metazoan, such as a mammal, is incredibly com-
plex, containing such complex hierarchical by-products as nerve net-
works, immune systems, eyes, and so on. An anatomist will tell you that
such structures can really only be understood in terms of their origin
and development in the maturing metazoan. And so it is with other cas.

We can only understand one of these “patterns in time,” be it New York
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City or a tropical forest, if we can understand its origin and the way in
which it has developed.

Just what happens as a fertilized egg develops into a complicated
metazoan, say a tiger? A tiger has a hundred billion cells, more or less,
organized in ways that make our most complicated computers look
absurdly simple. Much of the development process is obscure even now,
but we do have an outline of the main events. The process begins with
the fertilized egg dividing into two cells, followed by further divisions
that provide further doublings. These doublings cause a rapid increase
in the number of cells (thirty doublings is enough to provide a billion
cells). The offspring cells do not wander off as free-living entities;
instead they adhere to their parent cells and to each other. Soon the
number of cells increases sufficiently that there is a ball of cells with an
interior and an exterior. The concentration of various metabolites—
biochemical products of cell reactions—begins to vary from cell to cell.
Some metabolites diffuse away from the exterior cells, while remaining
in high concentration in the inner cells, and so on.

It is well known that changing concentrations of metabolites in a cell
can cause different genes in the cell’s chromosomes to be turned on and
off. That is, the cell can respond to certain metabolites by starting up
new activities while shutting down others. Cells with exactly the same
chromosomes thus can have very different activities and forms. In a
metazoan such as a tiger, this factor, more than any other, accounts for
the immense differences among its constituent cells. A tiger’s nerve cells
are very different from its skin cells, even though both carry the same
chromosomes. As the cells in the developing embryo increase in num-
ber, different genes turn on and off, causing even greater variation in
the concentrations of metabolites in different cells. This change, in
turn, alters the way the cells adhere to each other, giving rise to changes
in the shape of cell aggregates. The initial ball of cells goes through an
increasingly intricate set of transformations, eventually leading to local

structures that become organs, networks, and the like.

My object, then, is to extend Echo so that it can mimic the process of
producing a complex well-organized aggregate from a single “seed.”
Although the short précis just given does not do justice to the subtleties
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of the process of embryogenesis, it does suggest some mechanisms that
Echo should include:

1. We need to add some means whereby agents can adhere to one
another. It should include a provision for the formation of
boundaries that enable the resulting aggregates to form func-
tionally distinguished parts.

2. We need to enable an agent to transform resources, to mimic a
cell’s ability to transform abundant resources, at a cost, into
needed resources in short supply.

3. We need to extend the definition of the chromosome string,
so that parts of it can be turned on and off'in a way that affects
the interactions of the agents involved. Moreover, the process
of turning parts on and off must be made sensitive to the
activities of the agents, mimicking the effect of the metabolites
in biological cells.

In adding capabilities to the Echo model, we want to retain the
simple format of the agents in the basic model. In particular we want to
retain three features: (1) the simple string-specified structure, (2) repro-
duction limited by resource acquisition (implicit fitness), and (3) inter-
action mediated by tags. The only way I can see to provide a
chromosome with “switchable” genes, while retaining this format, is to
treat the agents as organelles or compartments in a more complex, cell-
like entity. That is, the agents, with their fixed structure, would be
aggregated into a more complex variable structure, which I'll call a
multiagent. With care, we can supply the multiagent with a chromo-
some that will be passed on to its offspring, while allowing the set of
primitive agents (organelles) to vary from pérent to offspring. That is,
the multiagent chromosome describes the range of agents (organelles)
the multiagent can contain, but the multiagent’s offspring will contain
only some of these agents. 1f we make the agents contained in the
offspring dependent on activities within the parent multiagent, we get
the effect of turning genes on and off. Then these cell-like multiagents
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can reproduce and aggregate into variegated, hierarchical structures
that mimic metazoans. That, in brief, is the line we shall follow.

The simplest implementation I've been able to conceive within these
constraints requires that the primitive agent be supplied with an addi-
tional five mechanisms, over and beyond the tag-mediated interaction
and reproduction provided by the basic model:

1. A mechanism that allows selective interaction. An interaction
condition checks a tag in the other agent to determine whether
or not an interaction takes place (much as the condition in a
rule checks a message).

2. A mechanism that permits resource transformation. An agent
is provided the capability of transforming one resource into
another, at the cost of gathering the resources necessary to
define a transformation segment in its chromosome string. For
example, with an appropriate transformation segment, an
agent may transform an abundant resource into one it needs
for reproduction. This process opens avenues for specialization
of the agents in a multiagent.

3. A mechanism that determines adhesion between agents. This
mechanism is implemented in terms of an adhesion tag. The
amount of adhesion between two agents is determined by the
degree of match between their adhesion tags.

4. A mechanism that allows selective mating. Implementation is
by means of a mating condition that checks the interaction tag of
a potential mate. A pair of agents having enough resources to
reproduce will produce offspring by crossover if their mating
conditions are mutually satisfied. This mechanism is not di-
rectly implied by the embryogenesis précis, but it makes the
emergence of species possible.

5. A mechanism for conditional replication. A replication condition
checks the activity of other agents that belong to the same
multiagent aggregate. Even after an agent has collected enough
resources to make a copy of its chromosome string, it only
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reproduces if its replication condition is satisfied by the activity
of some other agent in the multiagent. This mechanism is the
one that has the effect of turning genes on and off.

In the next section, by adding one of these mechanisms at a time, I
produce a sequence of increasingly sophisticated versions of Echo. As I
add each mechanism, I use the syntax provided by Echo to redescribe
the additional capabilities. If my conjectures are correct, the final model
in the sequence should enable us to mimic the embryogenesis of
multicellular organisms, or the origins of multiagent organizations such
as Adam Smith’s pin factory.

Each of these mechanisms is surprisingly easy to implement in a
computer, though the verbal descriptions that follow are at times
intricate. While the details do show that the mechanisms fit within the
Echo framework, they do not enter much into the discussions that
follow. If you, the reader, are willing to accept on faith the fit between
the added mechanisms and Echo, then you can skip the next section,
where the details are given, without substantially jeopardizing your
ability to follow subsequent sections.

The Extensions

As promised, each model in this sequence extends the previous model
by adding a single mechanism. The last model in the sequence imple-
ments the précis given above.

MODEL 2: CONDITIONAL EXCHANGE

The object now is to give each agent the possibility of rejecting
exchanges with other agents. To accomplish this, we retain a single
“chromosome” for the agent, but that chromosome is now divided into
two parts, a control segment and a fag segment (see Figure 3.5). The
control segment provides an exchange condition that checks the offense
tag in the other interactant’s chromosome; the exchange condition
treats that tag much as a rule treats messages in a rule-based agent.
Because tags are defined over the resource alphabet, the exchange
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condition responds to strings over the resource alphabet, rather than to
the binary strings used for messages in the rule-based system. To define
the exchange condition, we use a “don’t care” symbol, as in Chapter 2.
We can avoid adding a new symbol to the resource alphabet by simply
designating one of the symbols already in the alphabet as the don’t care
symbol. That is, in our earlier example using the alphabet [a,b,,d), we
would restrict the definition of tags to the subalphabet {a,b,¢, construct-
ing strings over the full alphabet {a,b,c, #(=d)} to define conditions.

Tags may be of different lengths, unlike the standardized length of
messages, so let’s alter the definition of a condition accordingly. To
accommodate arbitrary lengths, we treat the last specified letter in the
condition string as if it were followed by an indefinite number of don’t
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care symbols. That is, the condition b3b (=bdb) is treated as if it were
the condition b3bH#43 . ... Here are a couple of examples: The
condition a accepts for resource exchange any agent having an offense
tag that starts with an a. That is, it accepts any offense tag from the set {q,
aa, ab, ac, aaa, aab, aac, aba, abb, . . .}. Similarly, the condition bch accepts
any offense tag that starts with bcb. The condition b3b is a bit more
complicated, accepting any offense tag that has a b at the first and third
positions, namely, the set (bab, bbb, bcb, baba, babb, babc, babaa, . . ..

The condition is used as follows. When two agents encounter each
other, the exchange condition of each agent is first checked against the
other agent’s offense tag. If the conditions of both agents are satisfied,
then the exchange takes place. If neither condition is satisfied, then the
interaction is aborted. If the condition of one agent is satisfied but not
the other, then the agent with the unsatisfied condition has a chance of
“fleeing” the interaction. In the simplest case, it does so by aborting the
interaction with some fixed probability.

MODEL 3: RESOURCE TRANSFORMATION

The ability of cells or factories to transform resources into new forms
is a valuable property worth capturing in Echo. As we will see, this
option can be critical for certain agents if a particular resource is in
short supply. In particular, when we get to layered multiagents, re-
source transformation offers interesting opportunities for specializa-
tion. Again, I'll take the simplest possible approach, leaving
elaborations for future models.

Consider the “renewable” resources that underpin the agent struc-
tures in Echo. We can think of each of these resources as a molecule
having an interior structure. Using cellular biology as a guide, we can
think of transforming one resource into another by rearranging the
“molecular” structure. In a biological cell such transformations are
controlled by enzymes (the potent biological catalysts that can speed a
reaction by a factor of 10,000 or more). Our object is to provide agents
with counterparts of enzymes.

Because I am trying to avoid questions concerning the metabolism of
assembly, I prefer not to become concerned with the details of resource
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structure. Rather, my objective is to provide agents with a direct way of
transforming resource letters, {a,b,c,d} in our running example, into
other resource letters. The simplest way to do so is to add a subsegment
to the chromosome for each transformation desired. It is important that
there be a “cost” to this operation; otherwise, resources would be freely
interchangeable, and we would have no way to study the effects of
shortages or resource bottlenecks. The cost, as in earlier models, will be
a requirement that agents use resource letters to build the enzyme
subsegment specification. For each transformation there must be an
enzyme subsegment of the control segment, and the cost is the effort
required to collect the additional letters needed to specify these trans-
formation subsegments.

The transformation subsegment must, at a minimum, specify the
letter to be transformed and the letter that will result from the transfor-
mation (see Figure 3.6). The simplest designation would use just the
two letters involved. If a is to be transformed into b, then the transfor-
mation subsegment would be the substring ab. If the transformation is
to be made more costly, then additional letters are required, so that, for
example, the transformation segment for the transformation of a to b
would be the substring abcccc. We can think of the a and b in this
substring as specifying the “active sites” of the enzyme, and the cc as
specifying the structural part of the enzyme, the part that places the
active sites in a proper three-dimensional configuration.

There is still the matter of the “rate” of the transformation invoked
by a transformation subsegment. How much a will be transformed into
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Figure 3.6 Resource Transformation.
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b if the ab subsegment is present? It seems reasonable to confine the
transformation to resources the agent has collected in its reservoir. That
is, the transformation can only take place if there are copies of the letter
a in the agent’s reservoir. A transformation will pay off if (1) the
definition of the agent’s chromosome requires several copies of a target
letter that is in short supply, and (2) the rate of transformation is fast
enough that several copies of the resource letter can be transformed
during the agent’s life span. Otherwise, the investment of resources to
define the transfqrmation subsegment can never “pay off.” For instance,
it takes one instance of the letter b just to define the ab transformation
subsegment, so the investment cannot under any circumstances pay
unless at least two copies of the letter b can be obtained by transforming
ainto b during the agent’s life span. Because the shortest life span is one
time-step, let’s set the rate at two letters per time-step. Then even short-
lived agents can benefit from a transformation subsegment.

It seems natural to adopt the convention that multiple copies of the
transformation segment multiply the transformation rate. If an agent
has two copies of the a to b transformation segment in its chromosome,
it will transform four copies of a into b per time-step, given four or
more copies of a in its reservoir. It will pay to have multiple copies of
the transformation segment if the target letter b is in short supply, the
letter a is regularly in surplus, and the agent uses b extensively in its
chromosome.

Clearly, we are free to choose different transformation rates in differ-
ent models, and we can even choose different rates for different letters
in the same model. The relation between these transformation rates and
the site input rates for the basic resources will certainly affect the
evolution of the model. Evolution, by working on the transformations,
should “flatten” differences caused by different site input rates.

MODEL 4: ADHESION

Adhesion provides a way of forming multiagent aggregates. These
aggregates are reminiscent of colonial organisms (sponges and jellyfish)
and metazoan organisms (plants and animals). Agents selectively adhere
to each other and even form “layers.” As a result, they move and interact
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as units. Individual agents in the aggregate can adapt, over successive
generations, to take advantage of the specific environment provided by
the other agents in the aggregate. One agent in the aggregate might
specialize for offense or defense, while a second might specialize in
resource acquisition. If these two kinds of agents exchange appropriate
resources, then the aggregate and the agents therein will collect and
protect resources more efficiently, and therefore reproduce more
rapidly.

[t is as if the ants in our caterpillar-ant-fly triangle were permanently
attached to the caterpillars, instead of being independently mobile. The
caterpillars can reduce to a minimum the resources committed to
offense tags, while the ants can specialize their tags to efficient offense
without concern for resource acquisition.

Once aggregates start to form and survive, interactions and ex-
changes can evolve into ever more sophisticated configurations. One
kind of agent, by collecting and supplying a particular resource, can
induce a second kind of agent to specialize by taking advantage of an
assured supply of that resource. Some kinds of agents may also gain a
competence for resisting such inducements. The interplay of induction
and competence is a major aspect of developmental biology (see, for
example, Buss, 1987).

How can we implement conditional adhesion in Echo? Once again
tags, and the matching of tags, will play a key role. The procedure will
be much like the procedure for resource exchange. When agents come
into contact they will be checked for adhesion, as in the Chapter 1
example of the sticky billiard balls. To implement this operation, a new
tag that mediates adhesion is added to the tag segment of the chromo-
some. We can think of this tag as a kind of cell adhesion molecule (see
Edelman, 1988).

The interaction proceeds as follows. A pair of agents is selected for
interaction as in resource exchange. For adhesion it is often useful to
pair a parent with its offspring; this coupling facilitates an aggregate that
grows from a single agent, much like the growth of a metazoan organ-
ism from a fertilized egg. It is important to allow agents of the same
kind, as is often the case for parent and offspring, to have less than
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perfect adhesion. To accomplish this, the adhesion tag is not matched to
the adhesion tag on the other chromosome; if this were done, agents of
the same kind would always match perfectly, producing maximal adhe-
sion. Instead, the adhesion tag of each agent is matched to the offense tag
on the chromosome of the other agent (see Figure 3.7).

Match scores are then calculated. If each agent has a score close to
zero, then no adhesion takes place between the two agents. If at least
one of two match scores is not close to zero, then adhesion does take
place. The configuration induced by the adhesion depends on an
additional mechanism, boundary formation.

Boundaries

Boundaries provide a simple way of aggregating agents into layers
somewhat like those of an onion, and they are used to constrain agent
interactions. Each agent, at the time of its formation, is assigned to
exactly one boundary. Even an isolated agent that adheres to no other
agents is assigned to a unique boundary that contains that single agent.
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Figure 3.7 Agent Chromosome with Added Adhesion Tag.
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However, a boundary can contain many agents. The simplest nontrivial
aggregate is an aggregate that has only one boundary, with all agents in
the aggregate belonging to that boundary.

It is useful to array boundaries into configurations a bit more
complicated than simple layering. Rather than constraining each
boundary to contain a single interior boundary, as in the case of the
onion, we allow a boundary to contain several boundaries at the next
level inward, like an egg with multiple yolks. The simplest example of
this configuration is an outer boundary that contains two interior
boundaries side by side (see Figure 3.8). We can describe the progres-
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sive, possibly multiple, inclusions by using a kind of family tree. The
outermost boundary is represented by a node at the root of the tree.
Each of the boundaries directly included within the outermost
boundary is represented by a node connected to the root. An included
boundary can, in turn, contain further boundaries. A new node is
added for each “deeper,” second-level boundary, and it is connected
to the node representing the boundary containing it. This process is
repeated until we reach the innermost boundaries. Those are repre-
sented by nodes that constitute the “leaves” of the tree (no further
connections).

Boundaries constrain agent interactions as follows. An agent can
only interact with agents belonging to the same boundary, or with
agents belonging to adjacent boundaries. A boundary is adjacent to a
given boundary if it is directly exterior to (toward the root of the tree),
or directly interior to (toward the leaves of the tree), or resides alongside
(at the same level as, hence directly connected to the same node as) the
given boundary (see Figure 3.9). The set of agents with which a given
agent can interact is called its domain of interaction. It is convenient to
think of the site itself, with its supply of renewable resources, as a
boundary exterior to all the agents the site contains. Only agents on the
outermost boundary of an aggregate have a domain of interaction that
includes other aggregates at the site. This domain of interaction in-
cludes solitary single-agent aggregates, as well as the renewable re-
sources offered by the site.

The boundary to which an agent belongs is decided, via the
adhesion match scores, at the time it is formed from its parent.
Generally, each newly produced offspring undergoes an adhesion
interaction with its parent, but it also is useful to give the offspring a
kind of mobility, so that adhesion sometimes involves an agent other
than the parent. To simulate this mobility, another agent is sometimes
selected at random from within the parent’s domain of interaction;
this choice occurs with a probability that is a fixed parameter of the
model. Match scores are calculated for the pair consisting of the newly
formed offspring and the parent or selected agent, and the outcome is
determined as follows:
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Aggregate

. If both match scores are low, then (as mentioned earlier) the

agents do not adhere. If the parent belongs to an aggregate, the
offspring is ejected from the aggregate and becomes a new
one-boundary, one-agent aggregate. This ejected offspring, if
it has an appropriate structure, can become the seed of a new
aggregate similar to the one containing the parent.

If the two match scores are close to each other in value and not

close to zero, the offspring is placed in the boundary of the
selected agent.

If the match score of the selected agent is substantially higher
than that of the offspring, the offspring is placed in the bound-
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Figure 3.9 Domains of Interaction.
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ary immediately interior to the selected agent’s boundary. If
the parent’s boundary has no interior boundary, then one is
formed to contain the offspring; this way an aggregate de-
velops additional boundaries as its agents reproduce. The result
is a kind of developmental induction on the part of the parent,
where the offspring is forced to occupy a position it might not
otherwise occupy.

4. If the net score is high negative, then the effect is reversed; the
parent is forced to the interior of the boundary it occupies.

Options and Tests

If desired, adhesion interactions can take place at times other than the
formation of offspring. Under such an arrangement the interactions
can occur on a “random contact” basis, as in the exchange interac-
tions. Agents in the same domain of interaction are paired, as for
resource exchange, and the scoring scheme just described is used to
determine the outcome. With this provision an aggregate changes at a
rate determined by the frequency of the adhesion pairings. Adhesions
already in place may be changed by these interactions. For instance,
free agents could collect to form an aggregate, somewhat in the way
the amoeboid individual cells of slime mold aggregate to form a stalk-
like aggregate (a surprising sequence nicely described in Bonner,
1988). Or an agent in an aggregate may be expelled as a free agent,
to become a seed for a new aggregate, if it has an appropriate
chromosome.

Possible effects of conditional adhesion can be tested by setting up
designed aggregates in Echo (one could set up an aggregation imitating
Adam Smith’s pin factory). As with the caterpillar-ant-fly triangle, the
aggregate is tested for stability and for its ability to reproduce under the
laws of Echo. A more severe test, and a more interesting one, would be
to see if free agents can aggregate to become more efficient at collecting
and processing some resource. Such a study would move us in the
direction of understanding how Adam Smith’s pin factory first origi-
nated from an aggregation of individual craftsmen.
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MODEL 5: SELECTIVE MATING

Selective mating provides a way for agents to choose among poten-
tial mates, so that crossover occurs only with selected kinds of
individuals—the origin of species within Echo. As with resource
exchange and conditional adhesion, this interaction is tag mediated.

Selective mating is implemented by adding a mating condition to the
control segment of the chromosome (see Figure 3.10). This condition
is specified in the same way as the exchange condition, and it is matched
against the already extant offense tag of the potential mate. (We could,
of course, provide a completely new tag for this purpose. But it seems
that many of the effects of selective mating can be attained without
adding another tag to the chromosome.)

Selective mating is initiated once an agent has collected enough
resources to make a copy of itself. It then initiates a search for a mate
with which it can exchange chromosomal material. There are many
ways to do this, one of the simpler of which is to randomly select the
potential mate from the set of agents that are (1) ready to reproduce, and
(2) within the domain of interaction of the given agent. If the tag-
mediated selective mating conditions of both agents are satisfied, mating
proceeds. Copies of the parents’ chromosomes are made, using the
resources in their reservoirs. The copied chromosomes are crossed,
mutations take place, and the two resulting offspring are added to the
population at the site. This procedure is a bit like conjugation between
different mating types of paramecia (a process described in any standard
genetics text such as Srb et al., 1965). If one or both of the mating
conditions are not satisfied, the mating is aborted.

Note that an agent may be more or less selective concerning the
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Figure 3.10  Agent Chromosome with Added Mating Condition.
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agent it will accept as a mate, depending on the specificity of the mating
condition. Some agents may accept almost any other agent, while
others may be quite selective. This distinction gives considerable scope
to the evolutionary processes in Echo. It will be interesting to see what
environmental conditions favor the tight mating criteria typical of
mammals, and to contrast these with environmental conditions favor-
ing the more relaxed criteria typical of plants.

There is still one problem that must be resolved in implementing
selective mating. We want to study complex adaptive systems where
there are limitations on the number of agents a site can sustain. Earlier,
when we were dealing only with free agents, we did so by having the
offspring replace an agent drawn at random from the site, thereby
imposing a death rate that balanced the birth rate. This procedure
makes less sense now that agents, because of adhesion, have locations
within an aggregate. When a new agent is formed within an aggregate,
which agent, if any, should be deleted? There are many options, but a
simple one is to set a random death rate for all agents, decoupling death
from birth. That is, all agents have an average life span, and agents are
removed from their boundaries whenever chance, determined by the
random death rate, decrees. Subsequent replacement is indirect. Each
offspring formed is immediately tested for adhesion and is placed in the
boundary so determined. The offspring is immediately added to the
boundary, without replacing any agents there. Only the overall random
death rate will eventually balance the process.

MODEL 6: CONDITIONAL REPLICATION

With conditional replication we can, finally, construct a simple model
of metazoan embryogenesis within the Echo framework. Metazoans
accomplish the quite remarkable feat of developing from a single cell, a
fertilized egg, into a multicelled organism with a great diversity of cell
types. Yet all the cell types within this organism (with a few exceptions,
such as germ cells and some cells in the immune system) contain the
same chromosomes. How is this possible?

It is not just this question that impels me to add morphogenetic
processes to Echo. All cas exhibit phases of increasing organization as
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they evolve, but we have little that connects cas mechanisms to this
increasing organization. The dynamic in most cas is so intricate that it
beggars standard scientific techniques for treating dynamics. The math-
ematical models we have simply do not encompass the dynamics of
morphogenetic processes, and controlled experiments with the systems
themselves are difficult or impossible.

One of the difficulties centers on the symmetry breaking that goes
on in these morphogenetic processes. A metazoan grows from a single
fertilized cell via successive generations of cell division. However, this
cluster of cells soon loses its spherical symmetry, for it goes through a
series of stages where physical symmetries are lost, one after another.
And this is only the outward appearance. We know that the chemical
constitution of these cells becomes progressively more diverse, breaking
even more symmetries. It is difficult to treat such processes with partial
differential equations (PDE’), our traditional mathematical tool for
understanding dynamic processes.

Turing (1952) did manage to use PDE’s to design a model that started
from symmetric initial conditions, but produced an asymmetric varie-
gated pattern, much like the color pattern of a Holstein cow. Even this
simple formulation was mathematically intractable: Turing could ob-
serve specific examples of the dynamics, but he could derive no general
consequences from the mathematical model. In fact, he depended on a
computer-based version of the model to exhibit the dynamics of asym-
metric pattern formation. Little has been done mathematically since
then, and the problem remains much as it was.

As an aside, I note that part of the overall difficulty that attends
attempts to model morphogenesis is inadvertent and unnecessary. From
training, habit, and previous success, physicists and mathematicians
usually describe dynamic processes in terms of PDE%s. Maxwell’s
nineteenth-century description of electromagnetic dynamics and Ein-
stein’s twentieth-century theory ofrelativity both use simple, beautifully
symmetric sets of PDE’s. Those two triumphs of theoretical physics
underpin most present-day technology. The advent of the computer
did little to change this approach. Models of dynamic processes are first
written in (continuous) PDE’, then these equations are translated to
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(discrete) computational routines. However, this labored approach is
not necessary. Models can be directly written in terms of conditional
actions, as in our description of adaptive agents, and other combina-
torial operations such as crossover. These conditional/ combinatorial
operations are only awkwardly captured by PDE’s, so a direct approach
substantially enlarges the scope of rigorous modeling.

My own view is that a move toward computer-based models that are
directly described, rather than PDE-derived, will give handsome re-
turns in the study of cas. I do not think we will understand mor-
phogenesis, or the emergence of organizations like Adam Smith’s pin
factory, or the richness of interactions in a tropical forest, without the
help of such models. Our experience to this point with direct models
suggests that they can exhibit the combinatorial complexities of devel-
opmental processes. If this is true, such models offer the possibility of
controlled experiments that can suggest both guidelines for examining
real organizational processes and guidelines for mathematical abstrac-
tions of organizational dynamics.

In building direct computer-based models of morphogenesis, we can
be guided by the now-extensive knowledge of the mechanisms em-
ployed by metazoans in morphogenesis. This knowledge, hard won by
molecular geneticists, involves intricate pathways; but there is a simple
statement that summarizes the basic idea. Metazoans exhibit increasing
organization and diversity as they develop because the genes in their
chromosomes can be turned on and off (there is a good discussion in the
text of Srb et al., 1965, in the section titled “The Modulation of Gene
Action”). To give a little more detail, genes that are on are expressed by
the cell’s construction of the enzymes they encode. Enzymes are such
effective catalysts that they redirect the reactions in the cell. When
different genes are on, different enzymes and different reactions result,
leading to different structures. As a result, a single organism has cells as
different as nerve cells, muscle cells, and blood cells—even though all
the cells have the same chromosomes.

This outlook takes us part of the way, but it leaves us with a further
question. How are the genes turned on and off? Again, molecular

genetics has something to tell us. Strings of genes ina chromosome often
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have “headers”—tags again—that are sensitive to the biomolecules
presentin the cell (see Srb etal., 1965). If one of these molecules attaches
to the header, it can interfere with the expression of genes downstream
from the header. The genes are repressed (turned off). Other molecules
can clear the header, derepressing the genes (turning them on).

The genes themselves can, through the enzymes, favor or disfavor
the production of a wide variety of biomolecules. This fact opens the
possibility of intricate feedbacks whereby one gene, through its bio-
molecular by-product(s), can turn other sets of genes on or off. In
effect, the chromosome encodes a computer program with all sorts of
conditionals. Perhaps we can directly construct a relatively simple
computer-based model, if we can set aside some of the metabolic details
without losing the essence of the process.

Multiagents and Agent-Compartments

With these guidelines the question concerning mechanisms for mor-
phogenesis becomes: How can we imitate the repression and de-
repression of genes within Echo’s limited format? So far we have
attempted to keep the individual agents quite simple, so the chromo-
some of a given agent does not offer an array of “genes” (conditions
and specifications for tags) that can be turned on and off. In biological
terms the agents come closer to representing the organelles in a cell,
with their fixed functions, rather than the flexible organization of a
whole cell.

We need to try to aggregate the simple agents into something that
comes closer to a whole cell, with its multiple functions. This coming
together is reminiscent of Margulis’ theory of the origin of eu-
karyotes, the advanced cells that give rise to metazoans (see, for
example, Sagan and Margulis, 1988). According to this theory, an
eukaryote is a symbiotic amalgam of simpler, originally free-living,
precursor cells. The amalgam is formed when one precursor engulfs
another but fails to digest it. An aggregate at this level, call it a
multiagent (short for multicompartment agent), would have its struc-
ture determined by a chromosome that amounts to a concatenation of
the chromosomes of the component agents (see Figure 3.11). If
properly done, the multiagent would accumulate an array of genes
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that could be turned on and off. The multiagents could then further
aggregate, playing the role of cells in a metazoan.

Following this line, I will retain the agents so far defined as the
primitives of the system. They will serve as organelles or compartments
in the multiagent. To emphasize this aspect, I'll call the primitive agents
agent-compartments. We have to distinguish carefully between the multi-
agent’s chromosome and the compartments that chromosome de-
scribes. On the one hand, we want to define the multiagent’s
chromosome as the concatenation of the chromosomes of its compo-
nent agent-compartments. On the other hand, we want successive
generations of the multiagent’s offspring to have different arrays of
agent-compartments (so that the multiagent can carry out different
functions). But then the multiagent’s chromosome must not depend
directly on the agent-compartments present within it; otherwise the
multiagent’s chromosome would change from one generation to the
next as its compartment-agents changed. The multiagent can retain
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Figure 3.11 Characteristics of a Multiagent.
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hard-won adaptations from one generation to the next only if its
chromosome remains invariant under these changes.

To resolve this quandary, we have to designate an initial or basic form
for the multiagent, an ur-form, much like the fertilized egg from which
the rest of a metazoan develops. This ur-form will have a chromosome
that describes the full range of agent-compartments that the multiagent
may exhibit under various conditions, and that chromosome will be
carried from generation to generation.

Conditional Replication of Agent-Compartments

Our objective, then, is to design an aggregation procedure that (1) acts
as a single chromosome for the multiagent, and (2) allows different parts
of this chromosome to be active in different versions of the multiagents.
The guiding biological analogy can carry us a bit further. It suggests that
we think of a given agent-compartment as producing a key biochemical

CHROMOSOME FOR REPLICATING AGENT-COMPARTMENT:
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Figure 3.12  Agent Chromosome with Added Replication Condition.
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when it enters into an interaction. Let’s call such an agent-compartment
active.

We can implement this suggestion by setting up conditions, similar
to the headers mentioned earlier, that make the replication of an agent-
compartment dependent on the activity of other agent-compartments
in the multiagent. That is, we replace the < biochemical / gene de-
repression / enzyme / new biochemical > sequence by an < active
agent-compartment / condition / new active agent-compartment >
sequence. Under this setup the replication of an agent-compartment is
determined by a replication condition located in the control segment of
the part of the multiagent’s chromosome that specifies the agent-
compartment. The agent-compartment can replicate only if that con-
dition is satisfied by the activity of some other agent-compartment in
the multiagent. In this way a multiagent can have an offspring multi-
agent in which some compartments are missing because their replica-
tion conditions were not satisfied (the corresponding genes were
repressed). Note that the offspring multiagent’s chromosome is un-
changed, even though the set of compartments is different. Because the
offspring multiagent can have a different array of agent-compartments
from its parent, it can have different interaction capabilities, thus the
multiagent mimics the flexibility of a metazoan cell.

Specifically, this process comes down to adding a replication con-
dition to the control region of each agent-compartment (see Figure
3.12). This condition looks to the offense tags of the other active
agent-compartments in the multiagent. The replication condition is
satisfied only if at least one active agent-compartment in the multi-
agent has an offense tag that meets the condition’s requirements (see
Figure 3.13).

At the time the multiagent replicates, each agent-compartment rep-
lication condition that is satisfied is marked. That is, each replication
condition has an added marker bit which is set to 1 (“marked”) if that
condition is satisfied at replication time; otherwise it is set to 0 (“not
marked”). Agent-compartments with (replication condition) markers
set to 1 are considered to be “present” in the offspring; those with
markers set to 0 are considered to be “absent,” even though coded for in
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the chromosome (see Figure 3.13). An offspring multiagent can then
differ from its parent in the number of marked conditions, even though
it and its parent have the same (concatenated) chromosome. Only
agent-compartments with marked replication conditions (“present”)
enter into interactions.

Multiagent Interaction

Finally, we have to be more specific about the relation between agent-
compartment capabilities for interaction and multiagent capabilities for
interaction. For example, what determines a multiagent’s adhesion
capabilities?

Here [ invoke a simple principle that uses agent-compartment capa-
bilities directly: all interactions between multiagents are mediated by

Exzample:
Replication Condition Is Satisfied by
of Agent Offense Tag(s) of Agent(s)
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For instance activity of either agent-compartment U or V assures that
agent-compartment U appears in the next offspring of the multiagent.
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Figure 3.13  Conditional Replication of a Multiagent.
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their marked agent-compartments. It is easy to implement this princi-
ple if we follow our earlier approach for individual agents. There we
selected two agents at random for each interaction. Now we select two
aggregates in place of individual agents. In effect, aggregates move
about the site as units. If one (or both) of these aggregates is a multi-
agent, we must determine the form and outcome of the interaction. To
do this, we go one step further, randomly selecting one of the agent-
compartments in the multiagent’s outermost boundary (see Figure
3.14). Only agent-compartments having markers set to 1 are eligible
for selection. The selected agent-compartments serve as the “point of
contact” for the given multiagent interaction. A new selection is made
each time multiagents come into contact. Once the point-of-contact
agent-compartments have been selected, the interaction is carried out
as described for individual agents in the previous models.

Interactions within a site center on the multiagents, but the details of
the interactions still depend on the point-of-contact agent-compart-
ments. Accordingly, the possibilities for interaction remain those
described in the previous five models. The agent-compartments are
still the primitives that mediate adhesion and the accumulation of
resources.

The accumulation of resources within the reservoirs of the compo-
nent agent-compartments brings up an additional question: how are
the resources in these reservoirs distributed for reproduction of the
multiagent? Several conventions could be followed here, but one seems
particularly interesting. It treats a multiagent as an organization with
shared resources (see Figure 3.11). With this convention, the contents

Once multingents ave paired for interaction, an agent-compartment in the external
boundary of each multiagent is randomly selected as the "point of contact." The
selected agent-compartments vndergo an agent-to-agent interaction.

Figure 3.14 Multiagent Interaction.
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of the individual agent-compartment reservoirs are available for repro-
duction of all parts of the multiagent chromosome, in contrast with
using the content of each agent-compartment reservoir only for repro-
duction of the part of the chromosome that describes that agent-
compartment. This convention allows a wide variety of specializations,
akin to the permanently joined caterpillar-ant discussed in model 4. For
example, one agent-compartment might specialize in accumulating, or
producing, resource b, even though it uses few b’s in its own (portion of
the) chromosome. Under the shared reservoir convention, many paths
lead to enhanced reproduction rates, encouraging continued diver-
sification of the multiagents.

As with agents in the earlier models, multiagents continually
interact—even the multiagents within a larger aggregate. Each interac-
tion typically changes the content of the reservoirs of the agent-
compartments involved. Because of the sharing, a multiagent’s pos-
bilities for reproduction are modified. As in earlier models, the
ultiagent reproduces when it has enough resources in the reservoirs of
its agent-compartments to make a copy of its chromosome.

Distinguishing Multiagents from Other Aggregates

One last question about multiagents remains: When a multiagent re-
sides within a larger aggregate, how do we distinguish it from the rest of
the aggregate? This distinction must be made in order to determine
which agent reservoirs are shared in reproduction. A closer look at
the organization of boundaries within an aggregate gives us a direct
approach. Obviously a multiagent, being an aggregate of agent-
compartments, must have an outermost boundary. So the question
becomes; How do we mark the boundary of an aggregation of agent-
compartments as the boundary of a multiagent? Once we make this
provision, we can define the chromosome of the multiagent and we can
provide for further layering and boundaries involving multiagents.

In thinking about ways to mark a multiagent’s boundary, we must
also think about how that marking can originate and evolve. It is helpful
to return to the convention that an independent single agent is treated
as one-agent/one-boundary aggregate. Within this convention, we
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might as well treat an independent single agent as a one-agent/one-
boundary multiagent. That is, we treat an independent agent as the
simplest multiagent. We can then think of starting Echo with only the
simplest multiagents (the independent single agents), leaving it to evo-
lution to provide more complicated versions.

Of the many possibilities for increasing the complexity of multi-
agents, one of the simpler ones is the following. Occasionally, “pro-
mote” an aggregate of the simplest multiagents to the status of a single
multiagent, demoting the components to agent-compartments. To
implement this idea, add a multiagent boundary marker bit to the bound-
ary specifications. When the marker is 1 (“on”), the boundary is the
boundary of a multiagent; otherwise, the boundary plays its usual role
(see Figure 3.11). Then, when a pair of multiagents adhere to each
other, we occasionally carry out the promotion/demotion procedure.
That is, the marker for the boundary that contains the two multiagents
is set to 1, and the markers for the boundaries of the two multiagents are
set to 0 (see Figure 3.15). The result is a kind of mutation that produces
a larger multiagent composed of the original pair of multiagents. Some
care must be exercised so that the multiagent will not contain other
multiagents. It is easy to invoke this constraint at the time the
promotion/demotion procedure is executed.

We now have a way that complex multiagents can evolve in Echo,
and we need only tidy up one detail concerning the multiagent’s
chromosome. The whole objective of adding multiagents to Echo is to
facilitate the common-chromosome/variable-structure feature of
metazoan cells. We know that we derive the multiagent’s chromosome
by concatenating the chromosomes of the component agent-
compartments. In Echo we literally string the agent-compartment
chromosomes together to form one long chromosome. This simple
convention is the reason that we do not want a multiagent to contain
other multiagents—the concatenation convention would become am-
biguous. The multiagent reproduces when it accumulates enough re-
sources in the reservoirs of its agent-compartments to copy the long
chromosome. It is this chromosome that undergoes crossover and
mutation and is then passed on to the offspring multiagent.
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Figure 3.15 From Aggregate to Multiagent.

Summarizing

There certainly are other mechanisms that could be added to model 6,
and there are modifications that could be made to the steps leading to
this model, but model 6 gives a fair indication of the scope and intent of
the Echo models. Let me summarize.

m Echo has a geography represented by a network of sites. Each
site contains resources and agents.

m The resources are represented as a set of letters {a,b,,d, . . .).
Each site may have an upwelling or fountain that provides a
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selection of resources on each time-step, though some or
most sites may be barren. In effect, the resources are renew-
able.

m The agents, called agent-compartments in model 6, have struc-
tures represented by stringing resource letters together. The
strings are called chromosomes. (Again, I emphasize that these
chromosomes are far removed, in both complexity and func-
tion, from biological chromosomes, though there are some
similarities.) In addition, each agent has a reservoir for storing
resources acquired through interactions with the site and other
agents at the site. An agent has no other parts. In order to
reproduce, an agent must collect enough resources through
interactions to make a copy of its chromosome.

m The chromosome of an agent in model 6 consists of a tag
segment and a control segment. This chromosome provides the
agent with three tags, three interaction conditions, a capability
for resource modification, and a means of making an agent
active or inactive. (I have tried to reduce this array, but so far
have found no way to do so and still allow the scope and
examples I have in mind.)

m The tag segment contains three tags, an offense tag, a defense tag,
and an adhesion tag. When two agents interact, the offense tag
of each agent is matched to the defense tag of the other to
determine the amount of resource exchange between the two
(as in model 1); the offense tag is also used to constrain the
conditional exchange, mate selection, and conditional replica-
tion interactions (models 2, 5, and 6). The adhesion tag deter-
mines the degree of adherence between two interacting agents
(model 4).

1. The adhesion tag has some accompanying apparatus
that plays a major role in the formation and evolution of
organizations within Echo. When agents aggregate,
they form extra-agent structures called boundaries.
A treelike structure records boundaries and hence the
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relative position of each component agent within an
aggregate (model 4).

2. Sometimes aggregation results in a particular structure
called a multiagent. Such a unit treats the chromosome of
its component agents as a single chromosome, and it
shares all the resources in their reservoirs for purposes of
replication of the whole. Nodes in the tree structure that
represent the boundary of a multiagent are marked ac-
cordingly (model 4).

m The control segment contains three kinds of objects: condi-
tions, resource transformations, and an activity marker.

1. There are three conditions: an exchange condition, a
mating condition, and a replication condition (models 2,
5, and 6, respectively). Whenever agents are paired for
interaction, each condition checks the offense tag of the
other interactant’s chromosome to determine whether
or not the interaction will proceed.

2. There can be any number of resource transformations.
Each designates a source resource and a target resource;
when source is available in the reservoir, the resource
transformation transforms it to the target at a fixed rate
(model 3).

3. There is one marker in the control segment. If the
marker is set to 1, then the multiagent uses the agent’s
tags to mediate its interactions; otherwise the multiagent
acts as if the agent were not present in its aggregate
(model 6).

What Has Been Left Out?

Echo is kind of a caricature because I have kept the mechanisms few and
quite primitive. My bias is that simplicity, and elegance if you will, help
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us to describe complexities, as they do in mathematics. Equally impor-
tant, keeping the mechanisms primitive helps us avoid “unwrapping,”
the béte noir of computer-based investigations of complexity. Unwrap-
ping occurs when the “solution” is explicitly built into the program
from the start. Consider a program that is supposed to discover a simple
description of the movements of “the wanderers” (the planets) by using
a compilation of their successive positions in the night sky (3 la Kepler
using Tycho Brahe’s data—see Lodge, 1950). If the program is explicitly
given ellipses centered on the sun as one of a few possibilities, we will
learn little. We will have jumped over the complex reasoning that led
from the wanderers’ two-dimensional, S-shaped movements in the
night sky to planets moving in three-dimensional space on sun-
centered elliptic orbits. With unwrapping, the simulation reveals little
that is new or unexpected.

Given this deliberate attempt at caricature, it is important to know
what has been left out of Echo. In this respect, understanding Echo is
not so different from understanding the relevance of a good political
cartoon. We have to know what has been emphasized (or exaggerated)
to make a point, and what has been left out as distracting from that
point. Echo’s design uses three major shortcuts:

m Details of metabolism, and assembly of resources into the
agent’s structure, have been omitted. Once the resources are
acquired, they are automatically assembled into the required
structure—the chromosome string—with no attempt to sim-
ulate the chemistry involved. (By progressively adding resource
transformation capabilities to agents, the evolution of metabo-
lism can be modeled with increasing verisimilitude.)

m The agent’s internal structure—the phenotypic detail—is
represented on the string that provides the agent’s genetic
legacy—the genotype. The agent does have a phenotype
because it exhibits tags, and it conditions its interactions on
the tags presented by other agents. In a biological cell these
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phenotypic characteristics would be biomolecules attached to
organelles that are generated by decoding the genes. In Echo,
however, these characteristics are presented on a string that
plays the role of both the organelles and the chromosome that
specifies them. (It would not be difficult to separate these
functions, decoding a “chromosome” string to produce “or-
ganelle” strings, but considerable progress has been made with
the simplified version. The present arrangement lets us deter-
mine the stage at which “coding” becomes a major issue.)

m Echo’s agents have less capability than the adaptive agents de-
scribed in Chapter 2. Individual agents in Echo do have
stimulus-response reactions, implemented by conditions, and
they do make extensive use of tags. Individual agents do not
have the message-passing capabilities required for sophisticated
internal models such as default hierarchies. Moreover, the tags
control interactions in a much more direct and concrete fash-
ion. Because they are not attached to messages, they do not
exhibit the subtle, protosymbolic functions of messages. These
simplifications should force the agents in Echo to develop
information-processing capacities through more primitive
mechanisms. I would like to see the agents evolve program-
ming “languages,” rather than supply them with a full-fledged
language (the classifier system) at the outset.

If all works well, we will see multiagents in Echo develop detectors
and effectors—means of encoding the environment—in coordination
with the means for processing this information—programming capa-
bility. Each capacity should increase to take advantage of opportunities
offered by the other. I would expect to see these capacities exploited by
increases in the complexity of interior boundaries in multiagents. Mul-
tiagent structure, as defined here, is quite explicit and easy to observe.
In a full-fledged classifier system the structure is implicit in the clusters
of rules triggered by the different tagged messages. For many cas investi-
gations, the more sophisticated internal models possible with a classifier
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system may be critical; however, Echo’s agents offer a simpler approach
to questions of diversity and the emergence of organization. Experi-
ments with multiagents have not been run, but the next chapter
discusses the possibilities and connects them to experiments that have
been performed.







Simulating Echo

AT THIS POINT we have a description of the mechanisms and
interactions that are the foundations for the advanced Echo models. I
have two objectives in this chapter. I want to present a speculative
scenario that suggests how single free agents can evolve into multi-
agents, and then into specific aggregates of multiagents generated from
a single seed multiagent. Afterward I will discuss the procedure for
turning model 6 into a coherent simulation.

A Scenario for the Emergence of Organization

The scenario begins with multiple copies of a free agent that reproduces
upon collecting sufficient resources (see Figure 4.1). The agent has
neither conditions nor the tags they consult. Under the conventions
adopted in Echo, lack of conditions implies a “don’t care” (accepts all)
condition and lack of tags implies a zero match score, so the agents will
still interact. It is up to subsequent crossovers and mutations to originate
conditions and generate tags. Thus, the question of whether conditions
and tags are useful is still open. If tags and tag-based interactions appear
and persist, we will have established a role for them in the emergence of
organization, at least in the context provided by Echo.

The first step toward greater diversity would be a mutation giving
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rise to a conditional mating frame. Crossover and recombination then
would have an enhanced role, to exploit the increasing range of combi-
nations possible as mutations accumulate. (We can augment this process
by taking another page from the book of genetics, introducing intra-
chromosomal duplication. In its simplest form, this process simply takes a
portion of the chromosome and duplicates it, producing a new chro-
mosome with some part doubled. The added part provides fodder for
subsequent recombinations and mutations that extend the agent’s capa-
bilities.)

More complex organizations begin to emerge when crossover and
mutation give rise to conditional adhesion tags. When one of these tags
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Figure 4.1 Scenario for the Evolution of Multiagents.
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is such that the agent’s offspring adhere to it, we have the start of a kind
of colonial aggregate (like the sponges) that arises from a single agent.
Further modifications can produce adhesion scores that force some
offspring to form interior boundaries, which cause layering and further
organizational complexities. Because agents in the interior face a differ-
ent environment from agents on the exterior, opportunities for special-
ization occur. For example, the exterior agents can concentrate on
offense, defense, and trade, while the interior agents can specialize in
transforming abundant resources into others that are in short supply.

Once such aggregates begin to form, a mutation can move the
multiagent boundary marker “upward” in the aggregate, to form a
multiagent that includes several agents. The “chromosome” of the
multiagent then describes an organization where the included agents
serve as component compartments (“organelles”). The shared re-
sources of the agent-compartments provide further opportunities for
specialization and reproductive advantage.

At this point recombination and mutation can cause enough differ-
ences that, under conditional replication, the offspring of multiagents
contain different operational agent-compartments. Thus we obtain an
aggregate with differentiated multiagents, even though all the multi-
agents in this aggregate have the same chromosome. These variations
can lead to differences in adhesion. It is even possible for one of the
offspring to lose all adhesion to members of the aggregate and be
expelled as a free multiagent.

If such an expelled multiagent has the same structure (the same
chromosome and active agent-compartments) as the parent that
founded the aggregate, the cycle is closed. The evicted free agent
becomes a seed that produces adherent offspring that aggregate to yield
a new copy of the original aggregate. This process is similar to the one
whereby a metazoan is generated by successive divisions of a fertilized
egg, ultimately producing a new fertilized egg that can repeat the
process.

The appearance of new levels of organization in this evolution
depends on one critical ability: each new level must collect and protect
resources in a way that outweighs the increased cost of a more complex
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structure. If the seeded aggregate collects resources rapidly enough to
“pay” for the structural complexity, the seed will spread. In Echo, we
see new possibilities for further evolutionary modification of the aggre-
gate, through modifications of the seed.

If evolution in Echo were to proceed at all along the lines of this
scenario, we would have a rigorous exhibit of the emergence of organi-
zation. There is no guarantee that any real system evolves in this way,
yet it offers an advantage similar to von Neumann’s (1966) rigorous
demonstration of a self-reproducing machine. Prior to his work, the
possibility of such a machine had been debated for centuries. Von
Neumann settled the matter by demonstrating a machine (albeit a
simulated machine) that could reproduce itself. Similarly, if some ver-
sion of this scenario emerges from our simulation, Echo could show
that the mechanisms it employs are sufficient to generate sophisticated
morphogenesis.

Because the mechanisms at the base of this scenario are few and
designed to apply to all complex adaptive systems, we gain a great deal
more than just a demonstration of morphogenesis. Tests already com-
pleted make diversity an almost certain consequence. That offers an
explanation, using common mechanisms, of the pervasiveness of diver-
sity in cas. More than that, we gain a uniform description of the
processes of learning and adaptation, which brings us much closer to a
rigorous framework for describing salient cas phenomena.

Just what are the chances of observing this whole scenario, or
something like it, in a computer implementation of Echo? Frankly, I do
not know. But the scenario is not a naive guess. Many parts of the Echo
models have already been tested, and portions of this scenario have
been observed. Let us now examine ways of embodying Echo’s mecha-
nisms in computer simulations, including those that yield the tests and
observations so far completed.

The Nature of Simulation

It will be useful, I think, to start with a bit of stage setting. Most of us are
familiar with the use of computers for word processing, spreadsheets,
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tax calculations, and the like. The less-familiar use of computers for
simulation actually goes back to their origin. In a classic paper still
worth reading, Turing (1937) shows how to construct a computer, a
universal computer, that can imitate any other computing machine or
computation. The use of computers as devices for imitating other
devices is central to the concept of computer-based thought ex-
periments, so it is important to distinguish this use from “number
crunching”

The word “simulation” (Latin, “to feign,” “to look or act like”) itself
provides a clue. The heart of a simulation is a map that links parts of the
process being simulated to parts of the calculation called subroutines.
The map has two pieces: (1) a fixed correspondence that relates states of
the process to numbers in the calculation, and (2) a set of “laws” that
relate the dynamics of the process to the progress of the calculation. A
closer look at these two pieces will pay dividends when we come to the
specifics of the Echo simulation.

The usual approach to simulation is to divide the process being
simulated into components. Then a fixed correspondence is set up,
linking the possible states of each part to a range of numbers, as with
mathematical models. For example, if we were trying to ascertain the
current state of an automobile or airplane, we would ask questions such
as, How much fuel is in the tank? What is the rate of fuel use? What 1s
the current velocity? What is the air resistance at this velocity? All of
these numbers, and others, would be pertinent to the simulation.
When the collection of numbers is sufficient to describe all relevant
aspects of the process, we say the collection describes the state of the
process. This piece of the map, then, links the collection of numbers that
describes the state of the process to a corresponding collection of
numbers in the computer.

The second piece of the map provides the pivotal characteristic of a
simulation: it describes how the state of the process changes over time.

The computation still uses numbers, but now they relate to a dynamic
process. Changes in the numbers reflect changes in the process being
simulated. In setting down the laws that determine this part of the map,
we take advantage of the computer’s ability to execute conditional
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Note that a contact does not mean that an interaction will necessarily
take place—that depends on the conditions and match scores involved.
Contacts only set the stage for interaction.

This notion of contact has to be extended to allow for interactions
between aggregates. The general principle, enunciated earlier, is that all
interactions are ultimately between the individual agents in the aggre-
gate. The easiest way to make this extension is to select one agent at
random from the list of all agents at the site, then select the second agent
at random from within the domain of interaction of the first agent.

It is useful conceptually to divide all contacts into two types. One
type, which I'll call exchange contact, involves exchange interactions and
adhesion interactions that are not between parent and offspring. The
pairs used in exchange contacts are drawn at random from the general
population, subject only to conditions set by agent boundaries. The
second type of contact, which I'll call mating contact, involves mating and
the adhesion of offspring. The list of candidates in this second case is
restricted to those members of the population that have collected
enough resources to reproduce. That is, the list of mating candidates
consists of multiagents with enough resources to reproduce the whole
of the multiagent’s chromosome (recalling that a free primitive agent is,
formally, a single-agent, single-boundary multiagent). As with ex-
change contacts, the pairs are drawn with due attention to the domains
of interaction imposed by boundaries.

The simulation checks all exchange contacts, then it checks all
mating contacts. We’ll look at each in turn.

EXCHANGE CONTACTS

For contacts of the first type, exchange conditions are checked first. By
the procedures detailed in model 2 (Conditional Exchange), the ex-
change condition of each agent is checked against the offense tag of the
other. If the exchange conditions of both agents are satisfied, then each
offense tag is matched against the defense tag of the other agent and
match scores are calculated. Resources are exchanged according to the
specifications of model 1 (Offense, Defense, and a Reservoir). If one
condition, but not the other, is satisfied, then the agent with the
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unsatisfied condition has a chance of aborting the interaction; other-
wise the interaction proceeds as when both conditions are satisfied. If
neither exchange condition is satisfied, the exchange interaction is
aborted.

Once the exchange interactions are completed, some of the pairs,
chosen at random from the set of executed exchanges, undergo a test
for adhesion. The proportion of pairs so chosen is open to the experi-
menter; it is a parameter of the model. (Adhesion under these circum-
stances allows formation of aggregates from members-at-large in the
population, in contrast to adhesion that occurs between offspring and
parents under mating contacts.) For each chosen pair, the adhesion tag
of each agent is matched against the offense tag of the other agent in the
pair. Net match scores are calculated and boundaries are adjusted
according to the result, as detailed under model 4 (Adhesion).

When an exchange contact results in resource exchange or adhesion
between agent-compartments, then those agent-compartments are
marked active for later use with conditional replication (see below).

MATING CONTACTS

Mating contacts are restricted to multiagents that have accumulated
enough resources in the reservoirs of their compartment-agents to
allow replication of all their compartment-agents.

Because mating contacts are centered on multiagents, we need to
determine which mating condition to use when the multiagent has
more than one agent-compartment. Intuitively, it would seem natural
to restrict mate detection to agents in the outer boundary of the
multiagent. The simplest resolution apparently is to select one of these
agents at random, at each contact, as a determiner of the mating
condition. That is, each time there is a mating contact between two
multiagents, one of the agents in each of the outer boundaries is used to
determine whether or not a mating interaction follows the contact.
Note that the multiagent can present different “faces”
contacts if there are several agents in the outer boundary with different
mating conditions.

Once the determining agents have been selected in each multiagent,

on successive
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the procedure detailed in model 5 (Selective Mating) is used to determine
whether or not a mating interaction ensues. The mating condition of
each agent is checked against the interaction complement substring in
the other agent’s tag segment. The contact turns into a mating interac-
tion only if the mating conditions of both agents are satisfied.

A mating interaction proceeds in the usual manner for genetic
algorithms, with a pair of offspring being produced from the parents.
The chromosomes of the two parent multiagents are copied, crossed,
and mutated, producing two offspring. (This is only vaguely similar to
the real biological process, but it does exploit recombination of discov-
ered building blocks, a vital feature of cas. It is easy to bring the process
closer to biological reality, but at the cost of additional complexity in
computation.)

Once the offspring are produced, each is “assigned” to one of the
parents to test for mutual adhesion. Then the adhesion tags, specified in
the control segments of parent and offspring, are matched and scored, as
detailed in model 4 (Adhesion). This step makes possible a kind of
morphogenesis, producing aggregates through adhesion of successive
generations of offspring. As successive generations are produced, the
complexity of the aggregate can increase through two mechanisms:

(1) The calculated match score can force the offspring, or the parent,
to move interior to the boundary containing the parent; if no interior
boundary exists, it can force the formation of a new boundary.

(2) The conditional replication conditions, discussed in model 6
(Conditional Replication), may dictate that certain agent-compartments
in the offspring multiagent be “off” (effectively absent). It is at this
point that the active/inactive status of compartments, set during the
exchange contacts, comes into play. The conditional replication condi-
tion of each agent-compartment in the multiagent is checked against
the interaction tags of the multiagent’s active agent-compartments. An
agent-compartment is “on” (present) in the offspring only if the repli-
cation condition is satisfied, as detailed under model 6. Because only
agents that are on can interact, conditional replication can substantially

alter the patterns of exchange and adhesion as successive generations are
produced. This is the stage at which some multiagent offspring can be
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set free from the aggregate, through lack of adhesion, and we have the
possibility of producing a seed that will generate a whole new copy of
the aggregate.

A FLow DIAGRAM

The foregoing interactions between agents constitute the heart of
Echo, but there are still some “housekeeping” activities. They include
absorption of resources from the site, resource transformation, agent
death, and migration from site to site. I'll fit each of them into the flow
diagram for the Echo simulation (Figure 4.2).

Absorption of resources from the site is most easily handled if we
consider the site itself to be an agent with a tag. Then a conventional
agent residing at that site can interact with the site, if it has an appropri-
ate offense tag and exchange condition. Under this arrangement, the
ability of an agent to absorb resources from the site can evolve through
changes in its tag and condition, and the whole process simply becomes
part of the exchange contact section of the simulation.

Resource transformation is contingent on the presence of an appro-
priate section in the agent’s chromosome (details under model 3). It can
be executed at the end of the exchange contacts as a precursor to the
mating contacts.

Agent migration is most easily executed at the end of all contacts. In
the simulation, each agent is assigned a site label (coordinate), and
migration consists of changing that label to the label of an adjacent site.
In the simplest case a few agents are selected at random to have their site
labels changed. A more realistic version would have the probability of
selection for migration increase if the agent’s reservoir were low in
critical resources. (There are many variations on this theme.)

Agent death (as outlined in model 5, Selective Mating) can be the last
activity of each time-step. In the simplest case each agent has a fixed
probability of deletion. This process can be made more realistic by
charging each agent a “maintenance cost” on each time-step, say one
unit of each resource that it uses in its chromosome. If the agent’s

reservoir is devoid of all such resources after the charge, then it has an
increased probability of deletion. (Again, there are many variations on
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this theme. Note that when maintenance costs are charged, there is an
advantage if the parent passes some of the resources in its reservoir on to
its offspring.)

Tests: A Population-Based Prisoner’s Dilemma

At the time of this writing, only Echo model 1 has undergone extensive
tests. There is sophisticated software with good provision for interac-
tion and flexible means of displaying the action, much as one would
expect of a flight simulator (to be discussed later in this chapter). We
have observed biological arms races (see Figure 1.12), and situations
such as the caterpillar-ant-fly triangle have been tested.

Extensive tests of the other models lie in the future. We do have
results, from an Echo-like simulation, on the effects of tags in breaking
symmetries; these are interesting enough to warrant discussion.

At the end of Chapter 2, I introduced the Prisoner’s Dilemma to
illustrate the ways in which an adaptive agent improves its strategy. That
example can be extended easily to a population of agents in an Echo-
like environment. As in a billiard ball model, agents come into contact
at random and each has a strategy that it acquires from its parents
through recombination and mutation. When two agents come into
contact, they execute one play of the Prisoner’s Dilemma, each acting
as dictated by its strategy (see Figure 4.3). Over successive plays each
agent accumulates the payoffs it receives, and it produces offspring at a
rate proportional to its rate of accumulation. (This is a simplified
version of the Echo format in that the agents have an explicit fitness
function, with no need to collect resources to “spell out” their strate-
gies.) The object is to observe what strategies the agents evolve over
time as they adapt to each other.

Within this format let’s look at two experiments. In one experiment,
each agent has a chromosome that specifies its strategy, but it has no
means of distinguishing agents from one another. It is as if the agents
were all cue balls on a billiard table, with hidden internal models
(strategies). In the other experiment, each agent has a chromosome that
specifies an exterior tag and a condition for interaction, as well as a
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strategy. There is no necessary connection between the tag, the condi-
tion, and the strategy. All are separate parts of the chromosome, and all
are open to separate adaptations. The experiments, then, present two
worlds, one with tags and one without.

Will there be consistent differences in the strategies that evolve in
these two worlds? From our earlier discussions, we would expect an
advantage from the symmetry breaking provided by the tags. For
example, an agent developing a condition that identifies tags associated
with “cooperators” will prosper from the increased payoft that results.
We'll see that experiment does indeed bear out this conjecture, even as
it reveals some additional twists.

Some earlier experiments on selective mating (Perry, 1984) bear on
this process. Consider a population with a variety of randomly assigned
tags, and selective mating conditions that examine those tags. The
number of ways of combining tags with conditions grows rapidly as the
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* Each agent has a strategy determined by a set of rules.
For example, one of @'s rules could be: IF {(O} THEN coop.

* At each random contact ( * ), the pair of agents involved
plays one round of the Prisoner's Dilemma.

* Agents accumulate the payoff that results from successive
plays of the game.

* When an agent's accumulated payoff exceeds a predeter-
mined threshold, it reproduces itself (with mutation).

Figure 4.3 A Population-Based Version of the Prisoner’s Dilemma.
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number of tags and conditions increases. Even with modest numbers, it
is likely that some tag/condition combination will confer a slight
reproductive advantage. For example, a combination can restrict mat-
ing to “compatible” individuals that have building blocks that work
well together, thereby producing fewer ill-adapted offspring under
crossover. Any early, accidental association of a tag with a trait that
confers a reproductive advantage will spread rapidly because of the
higher reproduction rate. Tags that are originally meaningless, because
of the random assignment, then acquire meaning. They come to stand
for particular kinds of compatibility. Evolutionary processes refine se-
lective mating conditions based on these tags, so that agents can react to
this compatibility and thereby increase their fitness. In Perry’s experi-
ments different sites offered different possibilities for building blocks
and compatibilities. The amplification of tags and tuning of conditions,
under a genetic algorithm, led to well-defined, site-specific species that
did not crossbreed.

We would expect similar advantages to accrue to agents using tags in
the population-based Prisoner’s Dilemma experiment: an agent devel-
oping a condition that identifies tags associated with cooperators
should prosper from the increased payoft that results. As in the selective
mating experiments, there is strong selection for combinations of tags
and conditions that favor profitable interactions. In effect, the agents
develop tacit models, anticipating the effects of interacting with agents
that have certain kinds of tags.

Rick Riolo, at the University of Michigan, has executed experi-
ments along the lines just described. They confirm the expectation that
tags provide an advantage, and they yield some interesting insights.

Consider first the agents without tags. At each contact between a
pair of agents, one play of the Prisoner’s Dilemma is executed. Because
the pairing is random, the opponents are random and unidentified.

There is no basis for implementing conditional interactions. In this
evolving population, the productive tit-for-tat strategy never establishes
itself for any extended period. Interactions are largely of the minimax
defect-defect kind, clearly disadvantageous relative to cooperate-
cooperate interactions.

Agents with tags evolve along an entirely different path. At some
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point, as the strategies evolve, an agent appears that (1) employs tit for
tat, and (2) has a conditional interaction rule based on a tag carried by a
subpopulation that is susceptible to tit for tat. That is, the agent restricts
its interactions to agents having strategies that (often) produce a
cooperate-cooperate result under tit for tat. The resulting higher repro-
duction rate causes both this agent and its cooperating partners to
spread through the population. Subsequent recombinations provide tit-
for-tat agents that restrict their interactions to other agents playing tit
for tat. Once established, such a subpopulation is highly resistant to
invasion by other strategies. In biological terms, these agents, with their
conditional tag-mediated interactions, have found something close to
an evolutionarily stable strategy. (The notion of an evolutionarily stable
strategy, ESS, was introduced by Maynard Smith, 1978. Such a strategy,
once established in a population, resists the invasion of all other strate-
gies that might be introduced, in small numbers, by evolution.)

Even in the limited confines of the population-based Prisoner’s
Dilemma, the evolutionary opportunities for adaptive agents with tags
go considerably beyond the ESS just mentioned. For example, mimicry
becomes possible. While pursuing a different strategy, an agent can
present the tag associated with tit for tat. The presence of an agent with
a tag that has a well-defined functional meaning—tit for tat in this
case—opens new niches for other agents. These niches are usually
constrained in size, depending as they do on the continued presence of
the “founding” agent. In mimicry, biological studies suggest, the mimic
can only occupy a small proportion of the overall population relative to
the agents being mimicked. This is so because the other agents begin to
adjust to the deception as the proportion of mimics increases. Negative
feedback sets a limit on the mimic’s expansion. It is typical that tags
provide niches of limited “carrying capacity,” leading to highly diverse
systems with no “superindividual” that can outcompete all comers.

Future Uses

There are two broad lines of development open to Echo. One involves
increasingly sophisticated thought experiments aimed at an under-
standing of the mechanisms and principles of cas evolution. The other
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adds more realistic elements to Echo so that it can be used as a “flight
simulator” for policies directed at complex adaptive systems.

THOUGHT EXPERIMENTS

The scenario for the emergence of organization (at the beginning of
this chapter) is an example of what we can expect from thought
experiments based on Echo. Results already obtained with model 1,
and partial tests of some of the other mechanisms such as conditional
exchange, give credence to that scenario. But the outcome is far from
assured, and there is much to learn along the way.

It is worth emphasizing again that such computer-based thought
experiments are not attempts to match data. They are, rather, an
attempt to discover the adequacy of particular mechanisms. It is not
easy to come up with any explanations for cas phenomena, let alone
candidates that can be reduced to rigorous models. (As C. S. Pierce
would say, they are not so plentiful as blueberries; see Wiener, 1958.) So
it is an advance just to locate possibilities. It is useful to know how far
we can go with specific mechanisms, and the details of our failures may
suggest new mechanisms.

When mechanisms do prove adequate to generate parts of the sce-
nario, then it is worthwhile to see if they exist and play similar roles in
real cas. Successful thought experiments suggest where to look in the
complex tangle of possibilities and data, and they provide guidelines for
new experiments. When we reach this stage, the thought experiment
approach begins to merge with the flight simulator approach.

FLIGHT SIMULATORS

The copilot of a large commercial aircraft may have less than an hour of
actual flight time on that particular class of plane (say a 747) at the time
of his or her first flight with passengers. What the copilot does have is
many, many hours on a flight simulator for that class. It might seem that
the balance of time should be the other way around, but I prefer it the
way it is. In a simulator, a pilot can experiment in a way that would be
infeasible with real aircraft, let alone an aircraft with passengers. The
pilot can test performance with a two-engine flameout, or recovery
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from inverted flight. There have been cases where such experience has
saved lives, as a few years ago, when all the control surfaces on a
passenger plane became disconnected. The plane was landed by a pilot
who had tested, on a simulator, the ability to maneuver a plane on
thrust changes alone.

Of course, the value of simulator experience hinges on the simula-
tor’s faithfulness to the aircraft it models. To be useful, the flight
simulator must successfully mimic the real plane under the full range of
events that can occur. Solid theories of aerodynamics and control, a
natural cockpit-like interface, and superb programming are vital ingre-
dients of an acceptable flight simulator. Given this complex mix, how is
one to validate the resulting simulator? Even relatively simple programs
have subtle bugs, and flight simulator programs are far from simple.

Enter the experienced pilot. The pilot “takes the simulator out” for a
series of test flights, performing the maneuvers suggested by long
experience with real aircraft. In particular, the pilot “pushes the enve-
lope.” taking the simulated plane close to the edges of its design
parameters. If the simulator performs as the pilot expects, we have a
reality check; if not, back to the drawing board. It’s possible that there is
some unusual, untested pocket where the simulator departs from real
performance (similar surprises are possible with real aircraft), but it is
unlikely that the simulator is systematically wrong if it passes such a
“wringing out.”

This means of attaining a reality check sets a goal for simulations that
mimic real systems. Individuals experienced with true cas should be
able to observe familiar results when executing familiar actions in the
simulator. This puts a requirement not only on the programming, but
also on the interface provided. We should not expect the tester to
become an expert in the simulation program, any more than we expect
the pilot to be an expert in the programming behind the flight simula-
tor. The pilot was provided with a cockpit and display that enabled him
to take familiar actions and observe the results in a familiar way. An
expert ecologist, or economust, or politician should have similar advan-
tages when dealing with a simulation like Echo, when it is to be used to
mimic reality.
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Providing a realistic interface is a difficult and unusual task when
we're dealing with cas, but the interfaces of some of the more interesting
“political” video games point the way. For example, SimCity (Wright,
1989) provides intuitive, natural ways of looking at, and responding to,
an urban situation that involves taxation, zoning, crime, votes for
office, and so on. The game itself greatly simplifies urban dynamics, but
the interface is substantially more sophisticated than that provided for
extant simulations in the cas arena.

The end point, a cas simulation with a realistic interface, is highly
desirable, because it enables an ecologist, or economist, or politician to
try out alternatives that could not possibly be tried in real systems.
Intuition can be augmented by detailed exploration of the effects of
alternative courses of action. As for the pilot, ways of controlling
disaster scenarios can be tested. With sufficient forethought, disasters
can even be used in a positive way to change habits. In the aftermath of
the 1994 San Francisco earthquake, as much as 80 percent of the local
population started using the public transportation system. After a few
months ridership slacked off to something close to previous levels, but it
need not have. The increase in ridership was a predictable consequence
of the disaster, and a tremendous opportunity. Some prior thought
about reinforcing the change would certainly have made it possible to
retain a large proportion of the increased ridership.

How Far Have We Come?

We now have a way of modeling adaptive agents, and we have a way of
investigating their interactions. The models proposed are by no means
the only ones that could have been set up. Different ways of looking at
cas inevitably lead to different emphases and different models. For all of
that, the models here are not arbitrary.

The most important constraint is a requirement that the computer-
based model be something more than a programming language that can
define all agent strategies. Just because a language has the power to
describe a phenomenon does not mean that it will provide useful
insights. Two languages that have the same formal capabilities may
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provide very different insights. The model, and the language it uses,
must be tuned to the phenomena and questions of interest.

To better understand this, we need to take a closer look at what we
mean when we say that two sets of assumptions, say two axiom systems
for geometry, are formally equivalent. They are formally equivalent when
all the logical consequences, the theorems, of one system are identical to
those of the other. It is often possible to establish the formal equivalence
of two systems without knowing much about the theorems they entail.
This can be of considerable advantage in showing us that our formaliza-
tion has not undershot the mark by being insufficiently powerful. Yet it
is not enough for present purposes. Different formally equivalent sys-
tems can pose substantially different difficulties when it comes to
deriving key theorems. They may have quite different “accessible”
expressiveness.

Consider two formally equivalent formulations (axiom systems) for
Euclidian geometry. In one, the shortest proof of some important
theorem, say the Pythagorean, requires less than twenty steps, while in
the other the same theorem requires at least a billion steps (or any
number you care to choose). We know that such differences exist in
formally equivalent systems because of theoretical work done in the
first third of the twentieth century (see Mostowski, 1952). Certainly
these two systems will offer different insights into Euclidian geometry,
for any feasible amount of effort. That is, formally equivalent does not
mean “equivalent with respect to accessible insights” If we have se-
lected questions in mind, it is not enough to establish that a formalism is
formally adequate for answering those questions. A close look at the
questions is indispensable for arriving at a rigorous presentation that
will aid, rather than hinder, the investigation.

Applied to adaptive agents, these strictures validate the point made at
the start of this section. We require more than a programming language
that has the formal power to express all adaptive agent interactions.
Adaptive agents come in startling variety, and their strategies are corre-
spondingly diverse, so we need a language powerful enough to define
the feasible strategies for these agents. But that is just a begin-
ning. Models that can advance our understanding of questions about
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diversity, internal models, lever points, and the like, must satisfy addi-
tional strong constraints. We must look at the activities of the adaptive
agents—performance, credit assignment, and rule discovery—and tai-
lor the model for a direct investigation of the interactions that arise
from these activities. And we must provide well-defined evolutionary
procedures that enable agents to acquire learned anticipations and
innovations. These constraints are so powerful that it is not easy to
come up with any rigorous model that exhibits these capacities, let
alone one that is plausible.

Echo does satisfy these constraints and it is, to a degree, plausible.
Simulator runs with the simpler Echo models have exhibited the kinds
of evolution and interaction that we observe in real cas. Preliminary
runs that utilize some of the more sophisticated mechanisms have also
shown the enhancements we would expect from those mechanisms.
And several projects, some simple, some complex, are modifying Echo
to use real data. But there is a long way to go.

On a broader scale, I have no doubt that thought experiments,
guided by simulations such as Echo, are vital to a general understanding
of complex adaptive systems. We need the halfway house provided by
such simulations. The traditional direct bridge between theory and
controlled experiment is all but impossible in this situation. We cannot
follow the traditional experimental path, varying selected variables
under repeated runs, while holding most variables fixed, because con-
trolled restarts are not possible with most cas, and because some cas
operate over long time spans. The computer-based models can give us
this possibility if they capture the “right” aspects of real cas. In this the
models are no different from the designed experiments: Selection
guided by taste and experience is crucial. In the end, simulations such as
Echo will be productive only if they suggest patterns and building
blocks that can be turned into the stuff of mathematical theory.




Toward Theory

ALMOST ALL OF OUR EFFORT to this point has been spent in
getting to, and designing, the halfway house represented by Echo. Now
we look to the destination—general principles. Although that destina-
tion is still on the horizon, there are useful landmarks, and those of us
who have been studying cas at the Santa Fe Institute are optimistic
about the way ahead. We believe that there are general principles that
will deepen our understanding of all complex adaptive systems. At
present we can only see fragments of those principles, and the focus
shifts from time to time; but we can see outlines, and we can make
useful conjectures. Just what can we see and imagine?

Mathematics is our sine qua non on this part of the journey. For-
tunately, we need not delve into the details to describe the form of the
mathematics and what it can contribute; the details will probably
change anyhow, as we close in on the destination. Mathematics has a
critical role because it alone enables us to formulate rigorous generaliza-
tions, or principles. Neither physical experiments nor computer-based
experiments, on their own, can provide such generalizations. Physical
experiments usually are limited to supplying input and constraints for
rigorous models, because the experiments themselves are rarely de-
scribed in a language that permits deductive exploration. Computer-
based experiments have rigorous descriptions, but they deal only in
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specifics. A well-designed mathematical model, on the other hand,
generalizes the particulars revealed by physical experiments, computer-
based models, and interdisciplinary comparisons. Furthermore, the
tools of mathematics provide rigorous derivations and predictions ap-
plicable to all cas. Only mathematics can take us the full distance.

The Separation between Observation and Theory

To see more clearly the distance between observation and theory for cas,
let’s look again at an example—this time concerning sustainability.

Early in this century the supposedly inexhaustible forests of the
Upper Peninsula of Michigan were cut down, reducing most of the area
to a barren stumpland. Then, during the depression of the 1930’s, the
Civilian Conservation Corps (CCC) was formed to reduce the devas-
tating effects of unemployment in the cities. Over several years, at a
surprisingly low cost to the government, the CCC (many of whose
members in this region were drawn from Detroit) planted seedlings
throughout vast tracts of the Upper Peninsula. Now, half a century
later, the land is once again forested, to the great benefit of tourism and
the lumber industry (more cautious this time around). Extensive inter-
views of former CCC members several decades later show that almost
all of them look on this period as a turning point in their lives.

We would seem to have here a prime example of a lever point in a
political-economic context. But questions abound. Would this pro-
cedure be repeatable, at least in outline, if we replaced Detroit and the
Upper Peninsula with Los Angeles and the forests of the Northwest? Is
this an example of a broader class of symbiotic solutions coupling inner-
city problems with resource sustainability? More generally, what com-
bined circumstances in economics and politics make such long-horizon
investments possible? Must they always be centered on some disaster, as
in our earlier example of the San Francisco earthquake and public
transport? Why do those working with renewable resources, such as
forests and fish, exhaust those resources when they know (as they do)
that the action destroys their livelihood? Is this somehow connected
with the downside of the Prisoner’s Dilemma?
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The last two of these questions have anecdotal answers. We talk of
the “tragedy of the commons,” where some common resource is
overrapidly exploited by everyone, because each person mistrusts the
moderation of others. That is indeed reminiscent of the defect-defect
solution of the Prisoner’s Dilemma. And we talk of the “mobility of
capital,” where the investors in an industry are distinct from the “locals”
(the workers and owners), so the investors simply reinvest in some other
industry when the local industry collapses. The investors don’t suffer
the consequences of the collapse, at least in the short run, so they show
little concern. These answers have more substance than, say, the pun-
dits’ reasons for the rise or fall of today’s stock market, but we have no
firm basis for knowing when, or if, they apply.

We could, with substantial effort, model situations like this in Echo.
A flight simulator version would be particularly helpful, letting
the politician or economist observe the short-term and long-term
outcomes of policies they consider feasible. Still, that is not really
enough. We would do much better with guidelines that suggest
where to look. We need some way of searching beyond familiar
policies, which may offer little or may be caught in a legislative
deadlock. The space of possible policies is large, and there may be
some that exploit lever points, if we can just uncover them. But lever
points, at least in our examples, are often obscure and not easily
located by trial-and-error exploration. In these cases, theoretical
guidelines relating lever points to specifics of the problem would be an
invaluable help.

Tiwo-Tiered Models

The first step in moving toward an appropriate theory is, once more,
careful selection of mechanisms and properties from a multitude of
possibilities. It is helpful to recast the problem in a framework, such as
Echo, that relies on selected mechanisms common to all cas. It is
particularly helpful if the model is kept simple, while retaining salient
features of the problem that aim at thought experiments rather than a
full flight simulator. We can still keep looking toward theory, favoring
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elements that can be mathematicized, where this can be done without
jeopardizing relevance.

Consider the CCC example. A major part of the simulation in Echo
would center on the action of one set of agents (inner-city workers) as
catalysts for the recovery of another set of agents (the trees), after the
first set had moved from one site (Detroit) to another (the Upper
Peninsula). Here we are dealing with the consequences of flows (Chap-
ter 1). We are also dealing with differing timescales. The workers move
and act on one timescale, call it a “fast dynamic,” while the trees recover
on a much longer timescale, a “slow dynamic”

With the help of Echo, we can recast the problem in terms of flows of
resources between different kinds of agents, as is true of most cas
problems. We can make solid contact with mathematical models if we
make two simplifying assumptions: (1) the agents can be usefully aggre-
gated into species or kinds, and (2) there is a rapid mixing of resources
among agents of like kind. With respect to the first assumption, the
hierarchical organization typical of cas usually makes aggregation easy
and natural. (See, for example, the discussion of default hierarchies in
Chapter 2.) The second assumption assures that the consequences of
interactions are rapidly distributed within each aggregate. Rapid distri-
bution, in turn, assures that we can assign average resource levels to
aggregates at each instant, without being stymied by nonlinear effects
within the aggregate. Under these assumptions we can treat Echo-based
models (and complex adaptive systems) in a kind of two-tiered format.

THE LOwWER TIER

The lower tier concerns itself with the flow of resources between
agents of different kinds. The combination of rapid mixing within
each kind, and random contact between kinds, makes possible a
mathematical model much like the billiard ball model discussed in the
first chapter. That is, we can treat each kind of agent as a kind of
billiard ball, and for each pair we can determine a reaction rate. The
rate is directly determined by the exchange condition and the ex-
change scoring mechanism specified for each agent in Echo (see
model 2 in Chapter 3). The result is an array of reaction rates (see
Nonlinearity in Chapter 1).
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Once this array has been computed, we are close to having a mathe-
matical model that describes changes in flow over time. In particular,
we are close to describing mathematically the change in the proportion
of each kind of agent at a site, as time elapses. The relevant vehicle is the
version of the Lotka-Volterra equations discussed in the nonlinearity
example. Those equations let us determine the changes in proportion of
each agent-kind by using the reaction rates for various possible pairs.
However, we face a problem. The flow model gives the fotal resources
held by each agent-kind, but the equations require the proportion of each
agent-kind. Different kinds of agents use different amounts of resources
in their structures, so aggregate resource totals do not directly deter-
mine agent-kind proportions. To derive the proportions, we must
divide the aggregate resource totals by the amounts of each resource
required to make a copy of that kind of agent.

The rapid mixing assumption now lets us treat the resource totals as
equally shared by the individuals in each aggregate. Specifically, the
rapid mixing assumption ensures that all reservoirs in the aggregate hold
similar amounts of each resource. Knowing this, we can determine the
number of agents in the aggregate by dividing the total resources held
by the number of each kind of resource required to build that agent’s
chromosome. Then, knowing the number of individuals of each kind,
we can determine their proportions in the total of all individuals. Having
determined the proportion, we can use the Lotka-Volterra equations as
a mathematical description of the changing resource flows mediated by
the agents.

Even at this preliminary level, some theoretical progress can be made
concerning lever points. Because agents can have surpluses of some
resources, only certain resources held by the aggregate “count” toward
the number of any given agent-kind. The notion of a “bottleneck
resource” emerges. A close look at the flow model shows that a change
in the bottleneck resource—say a new interaction greatly increases its
level—can have much the effect of a mutation. It can open a cascade of
new interactions. Changes in a bottleneck resource often give rise to
effects far out of proportion to the change.

To adopt a term from physics, the lower tier gives us a mathematical
model of the fast dynamics of the system.
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THE UPPER TIER

For a mathematical theory of cas to be effective, the fast dynamics of the
flows must be successfully coupled to the slow dynamics of long-term
adaptation and evolution. In this two-tiered model, it is the upper tier
that specifies the evolution of the agents. It uses a genetic algorithm to
change the structures of offspring, as described at the end of Chapter 2.
In Echo the resulting agent structures precisely determine the amounts
of resource exchanged, so the reaction rates of the lower tier are directly
coupled to the results of actions in the upper tier. Note that a change in
the definition of the agent-kinds (aggregations) used in the lower tier
will result in different couplings to the upper tier.

In selecting the aggregations and couplings to the lower tier, we want
to make it easy to see how the network changes when the genetic
algorithm causes given building blocks (schemata) to spread and re-
combine. One extreme would be to allow one node in the network for
every distinct agent. Then the lower tier would be formally correct, but
the patterns of change would be spread over large numbers of nodes. At
best, the patterns would be difficult to discern. The lower tier only
becomes useful, both computationally and theoretically, when we can
aggregate agents into kinds based on the presence or absence of the
chosen building blocks. Then the patterns of change relative to these
building blocks will be manifest. This is the burden of the earlier “useful
aggregation” assumption (look back again at Chapter 1).

Aggregation of agents, however, raises a problem similar to our
earlier difficulty with aggregation of resources. For a given pair of
agents, we can directly determine a flow of resources and a reaction rate
(as detailed in Chapter 3). However, this is not necessarily an appropri-
ate reaction rate for the pair of aggregates to which these agents belong.
Agents of a given kind will not generally exchange resources in identi-
cal fashion; after all, we only collected them into a common kind
because they had some building blocks in common. So two agents of the
same kind may have different associated reaction rates. This puts us
squarely into the difficulty discussed under the topic of nonlinearity in
Chapter 1. We cannot simply average the reaction rates of individuals of
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a given kind to get a reaction rate for the aggregate agent-kind. That is,
reaction rates associated with the flow network are not simply related to
reaction rates associated with agent pairs.

We can determine a useful reaction rate for an agent-kind if the
constituent agents are not too different from one another relative to
their ability to exchange the resources of interest. In this instance the
individual reaction rates are close to one another, so that the flow
calculated with the average rate will not differ greatly from the actual
flow. (The actual flow is determined by summing the individual flows
of individual agents.) At worst, we can establish that no agent has a
reaction rate slower (larger) than a determined amount, allowing us to
determine bounds on the flow, rates of reproduction, and the like.

Keeping the individual reaction rates in an aggregate close to one
another actually is largely under the control of the theorist setting up
the two-tiered model. That person selects the characteristics that group
the agents into aggregates. By selecting appropriate characteristics, the
theorist can limit the variation in the individual reaction rates within
each aggregate. The building blocks of the exchange conditions and the
interaction tags are central to this purpose. By aggregating agents with
the same alleles for these building blocks, the theorist can assure close-
ness of reaction rates, while benefiting from a simplified lower tier.

In sum, one way to generate a useful coupling of the upper tier to the
lower tier is to aggregate agents with similar building blocks in the parts
of the chromosome devoted to the offense tag, the defense tag, and the
exchange condition. If we further constrain these aggregates by condi-
tional replication, we achieve something much like biological specia-
tion. Patterns should be sharpened because aggregates cannot blend
into one another. In any case, the upper tier has the effect of continually
changing the flow network of the lower tier, as the agents evolve and
adapt under the genetic algorithm.

A THEORY OF TwoO TIERS

The relevant theory for the upper tier starts with the schema theorem
for genetic algorithms because that theorem tells us about the spread
and decline of building blocks. However, the version of the theorem
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given at the end of Chapter 3 is only a beginning. We need a version of
the schema theorem that holds for the implicit fitness of the Echo
models. And the theorem should tell us about the spread of schemata
across kinds, with particular attention to the effects of selective mating.
This element is important if we are to understand the spread of building
blocks in real cas, such as the spread of the Krebs energy transformation
cycle throughout the vast range of aerobic organisms or the spread of
computer chips throughout machines ranging from automotive en-
gines to cameras.

Given the perpetual novelty of agents in the Echo models, we need
still more from a satisfactory theory. The unfolding development of an
Echo world is a trajectory through a space of multiple possibilities; we
need to know something of the form of this trajectory, particularly
because cas rarely reach end points or equilibria. We are likely to
understand a cas process only if we know what the trajectory looks like
along the way.

It will be difficult, perhaps impossible, to predict details of the
trajectory, but surely it is far from a random walk. At worst, we may face
a phenomenon similar to the day-to-day, month-to-month changes in
weather, though I think cas are more predictable than that. Even with
the weather, there are building blocks—fronts, highs and lows, jet
streams, and so on—and our overall understanding of changes in
weather has been much advanced by theory based on those building
blocks. It is still difficult to predict detailed weather changes, partic-
ularly over an extended period. Nonetheless, theory provides guide-
lines that lead us through the complexity of atmospheric phenomena.
We understand the larger patterns and (many of) their causes, though
the detailed trajectory through the space of weather possibilities is
perpetually novel. As a result, we can do far better than the old standby:
predict that “tomorrow’s weather will be like today’s” and you stand a
60 percent probability of being correct. A relevant theory for cas should
do at least as well.

Complex adaptive systems exhibit more regularities than weather for
at least two reasons. First, there is the persistence of favored building
blocks. (In biological systems, the Krebs cycle is pervasive in both space
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and time; in economies, taxes too are pervasive in space and time.)
Second, there is the phenomenon known in biology as convergence,
which imposes further predictable regularities. Convergence in this
sense should not be confused with the attainment of end points (fixed
points), the subject of mathematical convergence. Here convergence
refers to the similarity of agents occupying similar niches. With some
knowledge of the niche, we can say something of the form of the agent
that will occupy it. As an example, biologists recently discovered a
tropical flower with a throat of unprecedented depth, a flower belong-
ing to a genus invariably pollinated by moths. The niche provided by
this flower led the scientists confidently to predict the existence of a
moth, yet to be found, with a proboscis of equally unprecedented
length.

The regularities provided by building blocks and (biological) conver-
gence imply regularities in the development of the flow network.
These, in turn, imply that agents attain high concentrations at certain
kinds of nodes. New variants are most likely to arise where there are
many agents; more samples mean more possibilities for variation. Ac-
cordingly, the generation of new agent-kinds (nodes) should center on
these well-populated nodes, a kind of adaptive radiation. So we have
some hints about how the network would grow. If the fast dynamic is
modeled by a set of equations of the Lotka-Volterra form, this growth
means adding new equations to the set. The added equations produce
corresponding changes in the dynamics. To couple this growth to the
upper tier, we need a version of the schema theorem that takes selective
mating into account, while using only endogenous fitness. Such a
theorem would let us determine something of the form of the trajec-
tory through the space of lower-tier flow networks. It could give us
some idea of what convergence means in this general setting, a setting
that holds for all complex adaptive systems.

A Broader View

This two-tiered model undoubtedly captures a substantial portion of
what is going on in cas. Yet we are only starting to give it the precision
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required for mathematical theory. Two advances in mathematics would
help provide a theory of this two-tiered model. One is an organized
theory of a dynamics based on sets of equations that change in number
(cardinality) over time. Another is a theory that relates generators
(building blocks) to hierarchical structure (for example, default hier-
archies), strategies (classes of moves in games), and the “values” associ-
ated with those strategies (game payoft).

Now an aside, for those conversant with mathematics. Such a mathe-
matics would resemble the use of generating functions to estimate
parameters of stochastic processes (see Feller, 1950). Its combinatorial
aspect would have the flavor of the work on “automatic” (automaton)
groups (see Baumslag, 1994). The stochastic aspect can be studied with
the help of Markov processes, but the usual treatment of such processes,
which concentrates on eigenvectors and fixed points, will not be of
much help. Instead, we need to know what happens to aggregates
during the transient part of the process. Aggregation of states of the full
process encounters the usual difficulties with nonlinearities; still, there
are ways around this that may enable us to deal with perpetual novelty
(see, for example, Holland, 1986). A successful approach combining
generating functions, automatic groups, and a revised use of Markov
processes should characterize some of the persistent features of the far-
from-equilibrium, evolutionary trajectories generated by recombina-
tion.

Whatever our mathematical approach to cas, the objective remains to
determine common causes of common characteristics. When we em-
barked, I listed three mechanisms—tags, internal models, and building
blocks—and four properties—aggregation, nonlinearity, flows, and
diversity—that have become the prime candidates for causes and char-
acters in my own search. Other researchers will have other candidates.
Nevertheless, at the Santa Fe Institute I think we would all agree on the
following broad requirements for a successful approach to theory:

1. Interdisciplinarity. Different cas show different characteristics of
the class to advantage, so that clues come from different cas in
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different disciplines. In this exposition we’ve seen many com-
parisons and the uses to which they can be put.

2. Computer-based thought experiments.: Computer-based models
allow complex explorations not possible with the real system. I
have pointed out that it is no more feasible to isolate and
repeatedly restart parts of a real cas than it is to test flameouts on
a real jet airplane carrying passengers. Computer-based
models make counterpart experiments possible. Such models
can provide existence proofs, which show that given mecha-
nisms are sufficient to generate a given phenomenon. They
can also suggest critical patterns and interesting hypotheses to
the prepared observer, such as conditions for the existence of
lever points.

3. A correspondence principle. Bohr’s famous principle, translated to
cas, means that our models should encompass standard models
from prior studies in relevant disciplines. Two advantages ac-
crue. Bohr’s principle assures relevance of the resulting cas
theory by requiring it to incorporate hard-won distillations
and abstractions from well-established disciplines. It also fore-
stalls what I call “eye of the beholder” errors. Those errors
occur when the mapping between a simulation and the phe-
nomena being investigated is insufficiently constrained, allow-
ing the researcher too much freedom in assigning labels to
what are, after all, simply number streams in a computer.
Standard models from well-established disciplines constrain
this freedom because they have been developed with a stan-
dard mapping in mind.

4. A mathematics of competitive processes based on recombination. Ulti-
mately, we need rigorous generalizations that define the trajec-
tories produced by the interaction of competition and
recombination, something computer-based experiments can-
not provide on their own. An appropriate mathematics must
depart from traditional approaches to emphasize persistent
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features of the far-from-equilibrium evolutiona trajectories
q ry traj
generated by recombination.

I'believe this amalgam, appropriately compounded, offers hope fora
unified approach to the difficult problems of complex adaptive systems
that stretch our resources and place our world in Jjeopardy. It is an effort
that can hardly fail. At worst, it will disclose new sights and perspec-
tives. At best, it will reveal the general principles we seek.
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